Spaces:
Runtime error
Runtime error
from langchain.document_loaders import TextLoader | |
import pinecone | |
from langchain.vectorstores import Pinecone | |
import os | |
from transformers import AutoTokenizer, AutoModel | |
from langchain.agents.agent_toolkits import create_conversational_retrieval_agent | |
from langchain.agents.agent_toolkits import create_retriever_tool | |
from langchain.chat_models import ChatOpenAI | |
import torch | |
from langchain.agents.openai_functions_agent.agent_token_buffer_memory import (AgentTokenBufferMemory) | |
from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent | |
from langchain.schema.messages import SystemMessage | |
from langchain.prompts import MessagesPlaceholder | |
import gradio as gr | |
import time | |
from db_func import insert_one | |
def get_bert_embeddings(sentence): | |
embeddings = [] | |
input_ids = tokenizer.encode(sentence, return_tensors="pt") | |
with torch.no_grad(): | |
output = model(input_ids) | |
embedding = output.last_hidden_state[:,0,:].numpy().tolist() | |
return embedding | |
model_name = "BAAI/bge-base-en-v1.5" | |
model = AutoModel.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
prompt_file = open("prompts/version_2.txt", "r").read() | |
pinecone.init( | |
api_key=os.getenv("PINECONE_API_KEY"), # find at app.pinecone.io | |
environment=os.getenv("PINECONE_ENV"), # next to api key in console | |
) | |
index_name = "ophtal-knowledge-base" | |
index = pinecone.Index(index_name) | |
vectorstore = Pinecone(index, get_bert_embeddings, "text") | |
retriever = vectorstore.as_retriever() | |
tool = create_retriever_tool( | |
retriever, | |
"search_ophtal-knowledge-base", | |
"Searches and returns documents regarding the ophtal-knowledge-base.", | |
) | |
tools = [tool] | |
system_message = SystemMessage(content=prompt_file) | |
memory_key='history' | |
llm = ChatOpenAI(openai_api_key=os.getenv("OPENAI_API_KEY"), model="gpt-4", temperature=0.2) | |
prompt = OpenAIFunctionsAgent.create_prompt( | |
system_message=system_message, | |
extra_prompt_messages=[MessagesPlaceholder(variable_name=memory_key)], | |
) | |
agent_executor = create_conversational_retrieval_agent(llm, tools, verbose=False, prompt=prompt) | |
user_name = None | |
def run(input_): | |
output = agent_executor({"input": input_}) | |
output_text = output["output"] | |
source_text = "" | |
doc_text = "" | |
if len(output["intermediate_steps"])>0: | |
documents = output["intermediate_steps"][0][1] | |
sources = [] | |
docs = [] | |
for doc in documents: | |
if doc.metadata["source"] not in sources: | |
sources.append(doc.metadata["source"]) | |
docs.append(doc.page_content) | |
for i in range(len(sources)): | |
temp = sources[i].replace('.pdf', '').replace('.txt', '').replace("AAO", "").replace("2022-2023", "").replace("data/book", "").replace("text", "").replace(" ", " ") | |
source_text += f"{i+1}. {temp}\n" | |
doc_text += f"{i+1}. {docs[i]}\n" | |
output_text = f"{output_text} \n\nSources: \n{source_text}\n\nDocuments: \n{doc_text}" | |
doc_to_insert = { | |
"user": user_name, | |
"input": input_, | |
"output": output_text, | |
"source": source_text, | |
"documents": doc_text | |
} | |
insert_one(doc_to_insert) | |
return output_text | |
def make_conversation(message, history): | |
text_ = run(message) | |
for i in range(len(text_)): | |
time.sleep(0.001) | |
yield text_[: i+1] | |
def auth_function(username, password): | |
user_name = username | |
return username == password | |