Spaces:
Runtime error
Runtime error
Commit
·
7627550
1
Parent(s):
b286610
Upload folder using huggingface_hub
Browse files- conv_app.py +34 -2
- conversation.py +152 -13
conv_app.py
CHANGED
@@ -1,9 +1,41 @@
|
|
1 |
import gradio as gr
|
2 |
-
from conversation import make_conversation
|
3 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
with gr.Blocks(css="style.css") as demo:
|
6 |
-
gr.Markdown("
|
|
|
|
|
7 |
gr.ChatInterface(make_conversation).queue()
|
8 |
|
9 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from conversation import make_conversation
|
3 |
import random
|
4 |
+
import time
|
5 |
+
|
6 |
+
global USERNAME
|
7 |
+
global PASSWORD
|
8 |
+
global INPUT
|
9 |
+
global OUTPUT
|
10 |
+
global SOURCE
|
11 |
+
global DOCS
|
12 |
+
|
13 |
+
# def auth_function(username, password):
|
14 |
+
# USERNAME = username
|
15 |
+
# user_name = username
|
16 |
+
# return username == password
|
17 |
+
|
18 |
+
|
19 |
+
# def make_conversation(message, history):
|
20 |
+
# INPUT = message
|
21 |
+
# text_, source, docs = run(message)
|
22 |
+
# OUTPUT = text_
|
23 |
+
# SOURCE = source
|
24 |
+
# DOCS = docs
|
25 |
+
|
26 |
+
# # print("INPUT: ", INPUT)
|
27 |
+
# # print("OUTPUT: ", OUTPUT)
|
28 |
+
# # print("SOURCE: ", SOURCE)
|
29 |
+
# # print("DOCS: ", DOCS)
|
30 |
+
|
31 |
+
# for i in range(len(text_)):
|
32 |
+
# time.sleep(0.001)
|
33 |
+
# yield text_[: i+1]
|
34 |
|
35 |
with gr.Blocks(css="style.css") as demo:
|
36 |
+
gr.Markdown("""
|
37 |
+
# Dr. V AI
|
38 |
+
""")
|
39 |
gr.ChatInterface(make_conversation).queue()
|
40 |
|
41 |
demo.launch()
|
conversation.py
CHANGED
@@ -1,3 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from langchain.document_loaders import TextLoader
|
2 |
import pinecone
|
3 |
from langchain.vectorstores import Pinecone
|
@@ -14,6 +134,8 @@ from langchain.prompts import MessagesPlaceholder
|
|
14 |
import gradio as gr
|
15 |
import time
|
16 |
from db_func import insert_one
|
|
|
|
|
17 |
|
18 |
def get_bert_embeddings(sentence):
|
19 |
embeddings = []
|
@@ -24,8 +146,8 @@ def get_bert_embeddings(sentence):
|
|
24 |
return embedding
|
25 |
|
26 |
model_name = "BAAI/bge-base-en-v1.5"
|
27 |
-
model = AutoModel.from_pretrained(
|
28 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
29 |
prompt_file = open("prompts/version_2.txt", "r").read()
|
30 |
|
31 |
pinecone.init(
|
@@ -43,21 +165,38 @@ tool = create_retriever_tool(
|
|
43 |
"Searches and returns documents regarding the ophtal-knowledge-base.",
|
44 |
)
|
45 |
tools = [tool]
|
46 |
-
system_message = SystemMessage(content=
|
47 |
memory_key='history'
|
48 |
|
49 |
llm = ChatOpenAI(openai_api_key=os.getenv("OPENAI_API_KEY"), model="gpt-4", temperature=0.2)
|
|
|
50 |
prompt = OpenAIFunctionsAgent.create_prompt(
|
51 |
system_message=system_message,
|
52 |
extra_prompt_messages=[MessagesPlaceholder(variable_name=memory_key)],
|
53 |
)
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
user_name = None
|
57 |
|
58 |
def run(input_):
|
59 |
output = agent_executor({"input": input_})
|
60 |
output_text = output["output"]
|
|
|
61 |
source_text = ""
|
62 |
doc_text = ""
|
63 |
|
@@ -87,19 +226,19 @@ def run(input_):
|
|
87 |
"documents": doc_text
|
88 |
}
|
89 |
|
90 |
-
insert_one(doc_to_insert)
|
91 |
|
92 |
return output_text
|
93 |
|
94 |
-
def make_conversation(message, history):
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
|
100 |
-
def auth_function(username, password):
|
101 |
-
|
102 |
-
|
103 |
|
104 |
|
105 |
|
|
|
1 |
+
# from langchain.document_loaders import TextLoader
|
2 |
+
# import pinecone
|
3 |
+
# from langchain.vectorstores import Pinecone
|
4 |
+
# import os
|
5 |
+
# from transformers import AutoTokenizer, AutoModel
|
6 |
+
# from langchain.agents.agent_toolkits import create_conversational_retrieval_agent
|
7 |
+
# from langchain.agents.agent_toolkits import create_retriever_tool
|
8 |
+
# from langchain.chat_models import ChatOpenAI
|
9 |
+
# import torch
|
10 |
+
# from langchain.agents.openai_functions_agent.agent_token_buffer_memory import (AgentTokenBufferMemory)
|
11 |
+
# from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent
|
12 |
+
# from langchain.schema.messages import SystemMessage
|
13 |
+
# from langchain.prompts import MessagesPlaceholder
|
14 |
+
# import gradio as gr
|
15 |
+
# import time
|
16 |
+
# from db_func import insert_one
|
17 |
+
# from global_variable_module import gobal_input, global_output
|
18 |
+
# import random
|
19 |
+
|
20 |
+
|
21 |
+
# def get_bert_embeddings(sentence):
|
22 |
+
# embeddings = []
|
23 |
+
# input_ids = tokenizer.encode(sentence, return_tensors="pt")
|
24 |
+
# with torch.no_grad():
|
25 |
+
# output = model(input_ids)
|
26 |
+
# embedding = output.last_hidden_state[:,0,:].numpy().tolist()
|
27 |
+
# return embedding
|
28 |
+
|
29 |
+
# model_name = "BAAI/bge-base-en-v1.5"
|
30 |
+
# model = AutoModel.from_pretrained("/Users/aakashbhatnagar/Documents/masters/ophthal_llm/models/models--BAAI--bge-base-en-v1.5/snapshots/617ca489d9e86b49b8167676d8220688b99db36e")
|
31 |
+
# tokenizer = AutoTokenizer.from_pretrained("/Users/aakashbhatnagar/Documents/masters/ophthal_llm/models/models--BAAI--bge-base-en-v1.5/snapshots/617ca489d9e86b49b8167676d8220688b99db36e")
|
32 |
+
# prompt_file = open("prompts/version_2.txt", "r").read()
|
33 |
+
|
34 |
+
# pinecone.init(
|
35 |
+
# api_key=os.getenv("PINECONE_API_KEY"), # find at app.pinecone.io
|
36 |
+
# environment=os.getenv("PINECONE_ENV"), # next to api key in console
|
37 |
+
# )
|
38 |
+
|
39 |
+
# index_name = "ophtal-knowledge-base"
|
40 |
+
# index = pinecone.Index(index_name)
|
41 |
+
# vectorstore = Pinecone(index, get_bert_embeddings, "text")
|
42 |
+
# retriever = vectorstore.as_retriever()
|
43 |
+
# tool = create_retriever_tool(
|
44 |
+
# retriever,
|
45 |
+
# "search_ophtal-knowledge-base",
|
46 |
+
# "Searches and returns documents regarding the ophtal-knowledge-base.",
|
47 |
+
# )
|
48 |
+
# tools = [tool]
|
49 |
+
# system_message = SystemMessage(content=prompt_file)
|
50 |
+
# memory_key='history'
|
51 |
+
|
52 |
+
# llm = ChatOpenAI(openai_api_key=os.getenv("OPENAI_API_KEY"), model="gpt-4", temperature=0.2)
|
53 |
+
# prompt = OpenAIFunctionsAgent.create_prompt(
|
54 |
+
# system_message=system_message,
|
55 |
+
# extra_prompt_messages=[MessagesPlaceholder(variable_name=memory_key)],
|
56 |
+
# )
|
57 |
+
|
58 |
+
# agent_executor = create_conversational_retrieval_agent(llm, tools, verbose=False, prompt=prompt)
|
59 |
+
# user_name = None
|
60 |
+
|
61 |
+
# def run(input_):
|
62 |
+
# output = agent_executor({"input": input_})
|
63 |
+
# output_text = output["output"]
|
64 |
+
# source_text = ""
|
65 |
+
# doc_text = ""
|
66 |
+
# global_input = input_
|
67 |
+
# global_output = output_text
|
68 |
+
|
69 |
+
|
70 |
+
# if len(output["intermediate_steps"])>0:
|
71 |
+
# documents = output["intermediate_steps"][0][1]
|
72 |
+
# sources = []
|
73 |
+
# docs = []
|
74 |
+
|
75 |
+
# for doc in documents:
|
76 |
+
# if doc.metadata["source"] not in sources:
|
77 |
+
# sources.append(doc.metadata["source"])
|
78 |
+
# docs.append(doc.page_content)
|
79 |
+
|
80 |
+
# for i in range(len(sources)):
|
81 |
+
# temp = sources[i].replace('.pdf', '').replace('.txt', '').replace("AAO", "").replace("2022-2023", "").replace("data/book", "").replace("text", "").replace(" ", " ")
|
82 |
+
# source_text += f"{i+1}. {temp}\n"
|
83 |
+
# doc_text += f"{i+1}. {docs[i]}\n"
|
84 |
+
|
85 |
+
# # output_text = f"{output_text} \n\nSources: \n{source_text}\n\nDocuments: \n{doc_text}"
|
86 |
+
# # output_text = f"{output_text}"
|
87 |
+
|
88 |
+
# doc_to_insert = {
|
89 |
+
# "user": user_name,
|
90 |
+
# "input": input_,
|
91 |
+
# "output": output_text,
|
92 |
+
# "source": source_text,
|
93 |
+
# "documents": doc_text
|
94 |
+
# }
|
95 |
+
|
96 |
+
# insert_one(doc_to_insert)
|
97 |
+
|
98 |
+
# return output_text
|
99 |
+
|
100 |
+
# def make_conversation(message, history):
|
101 |
+
# text_ = run(message)
|
102 |
+
# for i in range(len(text_)):
|
103 |
+
# time.sleep(0.001)
|
104 |
+
# yield text_[: i+1]
|
105 |
+
|
106 |
+
# def auth_function(username, password):
|
107 |
+
# user_name = username
|
108 |
+
# return username == password
|
109 |
+
|
110 |
+
# def random_response(message, accuracy, history):
|
111 |
+
# print(type(message))
|
112 |
+
# print(message)
|
113 |
+
# print(accuracy)
|
114 |
+
# out = random.choice(["Yes", "No"])
|
115 |
+
# gobal_input = out
|
116 |
+
# # open a txt file
|
117 |
+
# with open("function hit", "a+") as f:
|
118 |
+
# f.write(message)
|
119 |
+
# return out
|
120 |
+
|
121 |
from langchain.document_loaders import TextLoader
|
122 |
import pinecone
|
123 |
from langchain.vectorstores import Pinecone
|
|
|
134 |
import gradio as gr
|
135 |
import time
|
136 |
from db_func import insert_one
|
137 |
+
from langchain.agents import AgentExecutor
|
138 |
+
|
139 |
|
140 |
def get_bert_embeddings(sentence):
|
141 |
embeddings = []
|
|
|
146 |
return embedding
|
147 |
|
148 |
model_name = "BAAI/bge-base-en-v1.5"
|
149 |
+
model = AutoModel.from_pretrained("models/models--BAAI--bge-base-en-v1.5/snapshots/617ca489d9e86b49b8167676d8220688b99db36e")
|
150 |
+
tokenizer = AutoTokenizer.from_pretrained("models/models--BAAI--bge-base-en-v1.5/snapshots/617ca489d9e86b49b8167676d8220688b99db36e")
|
151 |
prompt_file = open("prompts/version_2.txt", "r").read()
|
152 |
|
153 |
pinecone.init(
|
|
|
165 |
"Searches and returns documents regarding the ophtal-knowledge-base.",
|
166 |
)
|
167 |
tools = [tool]
|
168 |
+
system_message = SystemMessage(content="You are an assistant to ophthamologists and your name is 'Dr.V AI'. Help users answer medical questions. You are supposed to answer only medical questions and not general questions.")
|
169 |
memory_key='history'
|
170 |
|
171 |
llm = ChatOpenAI(openai_api_key=os.getenv("OPENAI_API_KEY"), model="gpt-4", temperature=0.2)
|
172 |
+
# llm = ChatOpenAI(openai_api_key="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", model="gpt-4", temperature=0.2)
|
173 |
prompt = OpenAIFunctionsAgent.create_prompt(
|
174 |
system_message=system_message,
|
175 |
extra_prompt_messages=[MessagesPlaceholder(variable_name=memory_key)],
|
176 |
)
|
177 |
|
178 |
+
memory = AgentTokenBufferMemory(memory_key=memory_key, llm=llm)
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
# agent_executor = create_conversational_retrieval_agent(llm, tools, verbose=False, prompt=prompt, )
|
183 |
+
|
184 |
+
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt)
|
185 |
+
|
186 |
+
agent_executor = AgentExecutor(
|
187 |
+
agent=agent,
|
188 |
+
tools=tools,
|
189 |
+
memory=memory,
|
190 |
+
verbose=True,
|
191 |
+
return_intermediate_steps=True,
|
192 |
+
)
|
193 |
+
|
194 |
user_name = None
|
195 |
|
196 |
def run(input_):
|
197 |
output = agent_executor({"input": input_})
|
198 |
output_text = output["output"]
|
199 |
+
print(output_text)
|
200 |
source_text = ""
|
201 |
doc_text = ""
|
202 |
|
|
|
226 |
"documents": doc_text
|
227 |
}
|
228 |
|
229 |
+
# insert_one(doc_to_insert)
|
230 |
|
231 |
return output_text
|
232 |
|
233 |
+
# def make_conversation(message, history):
|
234 |
+
# text_ = run(message)
|
235 |
+
# for i in range(len(text_)):
|
236 |
+
# time.sleep(0.001)
|
237 |
+
# yield text_[: i+1]
|
238 |
|
239 |
+
# def auth_function(username, password):
|
240 |
+
# user_name = username
|
241 |
+
# return username == password
|
242 |
|
243 |
|
244 |
|