from langchain.document_loaders import TextLoader import pinecone from langchain.vectorstores import Pinecone import os from transformers import AutoTokenizer, AutoModel from langchain.agents.agent_toolkits import create_conversational_retrieval_agent from langchain.agents.agent_toolkits import create_retriever_tool from langchain.chat_models import ChatOpenAI import torch from langchain.agents.openai_functions_agent.agent_token_buffer_memory import (AgentTokenBufferMemory) from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent from langchain.schema.messages import SystemMessage from langchain.prompts import MessagesPlaceholder import gradio as gr import time from db_func import insert_one def get_bert_embeddings(sentence): embeddings = [] input_ids = tokenizer.encode(sentence, return_tensors="pt") with torch.no_grad(): output = model(input_ids) embedding = output.last_hidden_state[:,0,:].numpy().tolist() return embedding model_name = "BAAI/bge-base-en-v1.5" model = AutoModel.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt_file = open("prompts/version_2.txt", "r").read() pinecone.init( api_key=os.getenv("PINECONE_API_KEY"), # find at app.pinecone.io environment=os.getenv("PINECONE_ENV"), # next to api key in console ) index_name = "ophtal-knowledge-base" index = pinecone.Index(index_name) vectorstore = Pinecone(index, get_bert_embeddings, "text") retriever = vectorstore.as_retriever() tool = create_retriever_tool( retriever, "search_ophtal-knowledge-base", "Searches and returns documents regarding the ophtal-knowledge-base.", ) tools = [tool] system_message = SystemMessage(content=prompt_file) memory_key='history' llm = ChatOpenAI(openai_api_key=os.getenv("OPENAI_API_KEY"), openai_organization=os.getenv("ORGANIZATION_KEY"), model="gpt-4", temperature=0.2) prompt = OpenAIFunctionsAgent.create_prompt( system_message=system_message, extra_prompt_messages=[MessagesPlaceholder(variable_name=memory_key)], ) agent_executor = create_conversational_retrieval_agent(llm, tools, verbose=True, prompt=prompt) user_name = None def run(input_): output = agent_executor({"input": input_}) output_text = output["output"] source_text = "" doc_text = "" if len(output["intermediate_steps"])>0: documents = output["intermediate_steps"][0][1] sources = [] docs = [] for doc in documents: if doc.metadata["source"] not in sources: sources.append(doc.metadata["source"]) docs.append(doc.page_content) for i in range(len(sources)): temp = sources[i].replace('.pdf', '').replace('.txt', '').replace("AAO", "").replace("2022-2023", "").replace("data/book", "").replace("text", "").replace(" ", " ") source_text += f"{i+1}. {temp}\n" doc_text += f"{i+1}. {docs[i]}\n" output_text = f"{output_text} \n\nSources: \n{source_text}\n\nDocuments: \n{doc_text}" doc_to_insert = { "user": user_name, "input": input_, "output": output_text, "source": source_text, "documents": doc_text } insert_one(doc_to_insert) return output_text def make_conversation(message, history): text_ = run(message) for i in range(len(text_)): time.sleep(0.001) yield text_[: i+1] def auth_function(username, password): user_name = username return username == password