Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
import pandas as pd
|
4 |
-
import io
|
5 |
-
from docx import Document
|
6 |
import tempfile
|
|
|
7 |
|
8 |
API_BASE_URL = "https://pubmed-api-jwfq.onrender.com/search_pubmed"
|
|
|
9 |
|
10 |
-
global_df = None # Global variable to store search results for export
|
11 |
|
12 |
-
def fetch_pubmed_articles(query, max_results=10, page=1, sort_by="Year",
|
|
|
13 |
"""
|
14 |
Fetches PubMed articles and applies sorting and filtering.
|
15 |
"""
|
@@ -21,7 +21,6 @@ def fetch_pubmed_articles(query, max_results=10, page=1, sort_by="Year", filter_
|
|
21 |
return f"β οΈ API Error: {response.status_code} - {response.text}", None
|
22 |
|
23 |
articles = response.json()
|
24 |
-
|
25 |
if not articles:
|
26 |
return "No articles found for this query.", None
|
27 |
|
@@ -31,17 +30,17 @@ def fetch_pubmed_articles(query, max_results=10, page=1, sort_by="Year", filter_
|
|
31 |
except:
|
32 |
article["Year"] = 0
|
33 |
|
34 |
-
#
|
35 |
if filter_journal and filter_journal != "All":
|
36 |
articles = [a for a in articles if filter_journal.lower() in a['Journal'].lower()]
|
37 |
|
38 |
-
#
|
39 |
if min_year:
|
40 |
articles = [a for a in articles if a["Year"] >= int(min_year)]
|
41 |
if max_year:
|
42 |
articles = [a for a in articles if a["Year"] <= int(max_year)]
|
43 |
|
44 |
-
#
|
45 |
if sort_by == "Year":
|
46 |
articles.sort(key=lambda x: x["Year"], reverse=True)
|
47 |
elif sort_by == "Title":
|
@@ -49,7 +48,7 @@ def fetch_pubmed_articles(query, max_results=10, page=1, sort_by="Year", filter_
|
|
49 |
elif sort_by == "Journal":
|
50 |
articles.sort(key=lambda x: x["Journal"])
|
51 |
|
52 |
-
# Format results
|
53 |
formatted_results = []
|
54 |
for article in articles:
|
55 |
formatted_results.append(
|
@@ -68,65 +67,85 @@ def fetch_pubmed_articles(query, max_results=10, page=1, sort_by="Year", filter_
|
|
68 |
return f"β οΈ Error fetching data: {str(e)}", None
|
69 |
|
70 |
|
71 |
-
|
72 |
def export_results(df, format_type):
|
73 |
"""
|
74 |
-
|
75 |
-
- Returns the file path instead of BytesIO to avoid TypeError in Gradio.
|
76 |
"""
|
|
|
|
|
77 |
if df is None or df.empty:
|
|
|
78 |
return None
|
79 |
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
if format_type == "CSV":
|
84 |
-
df.to_csv(temp_file_path, index=False)
|
85 |
-
elif format_type == "DOCX":
|
86 |
-
doc = Document()
|
87 |
-
doc.add_heading("PubMed Search Results", level=1)
|
88 |
-
for _, row in df.iterrows():
|
89 |
-
doc.add_heading(row["Title"], level=2)
|
90 |
-
doc.add_paragraph(f"π Journal: {row['Journal']} ({row['Year']})")
|
91 |
-
doc.add_paragraph(f"π¨βπ¬ Authors: {row['Authors']}")
|
92 |
-
doc.add_paragraph(f"π Link: {row['PubMed_URL']}")
|
93 |
-
doc.add_paragraph(f"π Abstract: {row['Abstract']}")
|
94 |
-
doc.add_paragraph("---")
|
95 |
-
doc.save(temp_file_path)
|
96 |
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
with gr.Blocks() as app:
|
102 |
gr.Markdown("""
|
103 |
-
# π **PubMed Search Tool with
|
104 |
-
|
105 |
-
## π **How to Use This App**
|
106 |
-
1οΈβ£ **Enter a Search Query** *(e.g., "Deep Learning in Psychiatry")*
|
107 |
-
2οΈβ£ **Set the Number of Results & Page Number** *(Default: 10 results per page)*
|
108 |
-
3οΈβ£ **Choose Sorting Option** *(Year, Title, or Journal - Default: Year)*
|
109 |
-
4οΈβ£ **(Optional) Filter by Journal Name** *(e.g., "Nature", "JAMA")*
|
110 |
-
5οΈβ£ **(Optional) Filter by Year Range** *(Set min & max year, e.g., 2015 - 2023)*
|
111 |
-
6οΈβ£ **Click "π Search" to fetch results**
|
112 |
-
7οΈβ£ **Click "π Export as CSV" or "π Export as Word DOCX" to save articles**
|
113 |
-
8οΈβ£ **Click "π Show Abstract" under each result to expand full abstract**
|
114 |
-
|
115 |
-
## β οΈ **Important Notes**
|
116 |
-
- **Sorting & Filtering can be combined** *(e.g., show only "Nature" articles from 2020-2024, sorted by Title)*
|
117 |
-
|
118 |
""")
|
119 |
|
120 |
with gr.Row():
|
121 |
-
query_input = gr.Textbox(label="π Search Query", placeholder="
|
122 |
-
|
123 |
with gr.Row():
|
124 |
-
max_results_input = gr.Slider(1, 50, value=10, step=1, label="π
|
125 |
-
page_input = gr.Slider(1,
|
126 |
|
127 |
with gr.Row():
|
128 |
-
sort_input = gr.Dropdown(
|
129 |
-
journal_filter_input = gr.Textbox(label="π― Filter by Journal (
|
130 |
|
131 |
with gr.Row():
|
132 |
min_year_input = gr.Number(label="π
Min Year", value=None)
|
@@ -139,29 +158,18 @@ with gr.Blocks() as app:
|
|
139 |
|
140 |
results_output = gr.HTML()
|
141 |
export_csv_output = gr.File(label="Download CSV")
|
142 |
-
export_docx_output = gr.File(label="Download
|
143 |
-
|
144 |
-
def search_and_display(query, max_results, page, sort_by, journal_filter, min_year, max_year):
|
145 |
-
global global_df
|
146 |
-
result_text, df = fetch_pubmed_articles(query, max_results, page, sort_by, journal_filter, min_year, max_year)
|
147 |
-
global_df = df
|
148 |
-
return result_text
|
149 |
-
|
150 |
-
def export_csv():
|
151 |
-
if global_df is not None:
|
152 |
-
return export_results(global_df, "CSV")
|
153 |
-
|
154 |
-
def export_docx():
|
155 |
-
if global_df is not None:
|
156 |
-
return export_results(global_df, "DOCX")
|
157 |
|
158 |
search_button.click(search_and_display,
|
159 |
-
inputs=[query_input, max_results_input, page_input,
|
|
|
160 |
outputs=results_output)
|
161 |
|
162 |
export_csv_button.click(export_csv, outputs=export_csv_output)
|
163 |
export_docx_button.click(export_docx, outputs=export_docx_output)
|
164 |
|
|
|
165 |
if __name__ == "__main__":
|
166 |
-
app.launch(
|
|
|
167 |
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
import pandas as pd
|
|
|
|
|
4 |
import tempfile
|
5 |
+
from docx import Document
|
6 |
|
7 |
API_BASE_URL = "https://pubmed-api-jwfq.onrender.com/search_pubmed"
|
8 |
+
global_df = None # Global variable to store search results
|
9 |
|
|
|
10 |
|
11 |
+
def fetch_pubmed_articles(query, max_results=10, page=1, sort_by="Year",
|
12 |
+
filter_journal="All", min_year=None, max_year=None):
|
13 |
"""
|
14 |
Fetches PubMed articles and applies sorting and filtering.
|
15 |
"""
|
|
|
21 |
return f"β οΈ API Error: {response.status_code} - {response.text}", None
|
22 |
|
23 |
articles = response.json()
|
|
|
24 |
if not articles:
|
25 |
return "No articles found for this query.", None
|
26 |
|
|
|
30 |
except:
|
31 |
article["Year"] = 0
|
32 |
|
33 |
+
# Filter by journal
|
34 |
if filter_journal and filter_journal != "All":
|
35 |
articles = [a for a in articles if filter_journal.lower() in a['Journal'].lower()]
|
36 |
|
37 |
+
# Filter by year
|
38 |
if min_year:
|
39 |
articles = [a for a in articles if a["Year"] >= int(min_year)]
|
40 |
if max_year:
|
41 |
articles = [a for a in articles if a["Year"] <= int(max_year)]
|
42 |
|
43 |
+
# Sorting
|
44 |
if sort_by == "Year":
|
45 |
articles.sort(key=lambda x: x["Year"], reverse=True)
|
46 |
elif sort_by == "Title":
|
|
|
48 |
elif sort_by == "Journal":
|
49 |
articles.sort(key=lambda x: x["Journal"])
|
50 |
|
51 |
+
# Format markdown results
|
52 |
formatted_results = []
|
53 |
for article in articles:
|
54 |
formatted_results.append(
|
|
|
67 |
return f"β οΈ Error fetching data: {str(e)}", None
|
68 |
|
69 |
|
|
|
70 |
def export_results(df, format_type):
|
71 |
"""
|
72 |
+
Safely exports the given DataFrame to a temporary file (CSV or DOCX).
|
|
|
73 |
"""
|
74 |
+
import traceback
|
75 |
+
|
76 |
if df is None or df.empty:
|
77 |
+
print("β οΈ Warning: DataFrame is empty or None. Nothing to export.")
|
78 |
return None
|
79 |
|
80 |
+
try:
|
81 |
+
suffix = f".{format_type.lower()}"
|
82 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=suffix)
|
83 |
+
temp_file_path = temp_file.name
|
84 |
+
|
85 |
+
if format_type == "CSV":
|
86 |
+
df.to_csv(temp_file_path, index=False)
|
87 |
+
|
88 |
+
elif format_type == "DOCX":
|
89 |
+
doc = Document()
|
90 |
+
doc.add_heading("PubMed Search Results", level=1)
|
91 |
+
for _, row in df.iterrows():
|
92 |
+
doc.add_heading(row.get("Title", "Untitled"), level=2)
|
93 |
+
doc.add_paragraph(f"π Journal: {row.get('Journal', 'Unknown')} ({row.get('Year', '')})")
|
94 |
+
doc.add_paragraph(f"π¨βπ¬ Authors: {row.get('Authors', 'N/A')}")
|
95 |
+
doc.add_paragraph(f"π Link: {row.get('PubMed_URL', 'N/A')}")
|
96 |
+
doc.add_paragraph(f"π Abstract: {row.get('Abstract', '')}")
|
97 |
+
doc.add_paragraph("---")
|
98 |
+
doc.save(temp_file_path)
|
99 |
+
|
100 |
+
temp_file.close()
|
101 |
+
return temp_file_path
|
102 |
+
|
103 |
+
except Exception as e:
|
104 |
+
print("β Export failed:", str(e))
|
105 |
+
traceback.print_exc()
|
106 |
+
return None
|
107 |
+
|
108 |
+
|
109 |
+
def export_csv():
|
110 |
+
if global_df is not None:
|
111 |
+
file_path = export_results(global_df, "CSV")
|
112 |
+
if isinstance(file_path, str):
|
113 |
+
return file_path
|
114 |
+
return None
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
def export_docx():
|
118 |
+
if global_df is not None:
|
119 |
+
file_path = export_results(global_df, "DOCX")
|
120 |
+
if isinstance(file_path, str):
|
121 |
+
return file_path
|
122 |
+
return None
|
123 |
+
|
124 |
+
|
125 |
+
def search_and_display(query, max_results, page, sort_by, journal_filter, min_year, max_year):
|
126 |
+
global global_df
|
127 |
+
result_text, df = fetch_pubmed_articles(query, max_results, page, sort_by, journal_filter, min_year, max_year)
|
128 |
+
global_df = df
|
129 |
+
print("π Search completed. DataFrame loaded with", len(df) if df is not None else 0, "articles.")
|
130 |
+
return result_text
|
131 |
|
132 |
|
133 |
with gr.Blocks() as app:
|
134 |
gr.Markdown("""
|
135 |
+
# π **PubMed Search Tool with Export Options**
|
136 |
+
### Search biomedical literature and export results as CSV or Word DOCX.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
""")
|
138 |
|
139 |
with gr.Row():
|
140 |
+
query_input = gr.Textbox(label="π Search Query", placeholder="e.g., 'Deep Learning in Psychiatry'")
|
141 |
+
|
142 |
with gr.Row():
|
143 |
+
max_results_input = gr.Slider(1, 50, value=10, step=1, label="π Results per Page")
|
144 |
+
page_input = gr.Slider(1, 100, value=1, step=1, label="π Page Number")
|
145 |
|
146 |
with gr.Row():
|
147 |
+
sort_input = gr.Dropdown(["Year", "Title", "Journal"], value="Year", label="π Sort By")
|
148 |
+
journal_filter_input = gr.Textbox(label="π― Filter by Journal (optional)", placeholder="e.g., Nature")
|
149 |
|
150 |
with gr.Row():
|
151 |
min_year_input = gr.Number(label="π
Min Year", value=None)
|
|
|
158 |
|
159 |
results_output = gr.HTML()
|
160 |
export_csv_output = gr.File(label="Download CSV")
|
161 |
+
export_docx_output = gr.File(label="Download DOCX")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
search_button.click(search_and_display,
|
164 |
+
inputs=[query_input, max_results_input, page_input,
|
165 |
+
sort_input, journal_filter_input, min_year_input, max_year_input],
|
166 |
outputs=results_output)
|
167 |
|
168 |
export_csv_button.click(export_csv, outputs=export_csv_output)
|
169 |
export_docx_button.click(export_docx, outputs=export_docx_output)
|
170 |
|
171 |
+
|
172 |
if __name__ == "__main__":
|
173 |
+
app.launch()
|
174 |
+
|
175 |
|