File size: 5,927 Bytes
5c0e13b
 
1eb87a5
5c0e13b
1eb87a5
5c0e13b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb87a5
5c0e13b
 
 
 
 
1eb87a5
5c0e13b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import torch
import jax
import jax.numpy as jnp
import numpy as np
from PIL import Image
import pickle
import warnings
import logging
from huggingface_hub import hf_hub_download
from diffusers import StableDiffusionXLImg2ImgPipeline
from transformers import DPTImageProcessor, DPTForDepthEstimation
from model import build_thera

# Configuração de logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler("processing.log"),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

# Configurações e supressão de avisos
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)

# Configurar dispositivos
JAX_DEVICE = jax.devices("cpu")[0]
TORCH_DEVICE = "cpu"


# 1. Carregar modelos do Thera ----------------------------------------------------------------
def load_thera_model(repo_id, filename):
    try:
        logger.info(f"Carregando modelo Thera de {repo_id}")
        model_path = hf_hub_download(repo_id=repo_id, filename=filename)
        with open(model_path, 'rb') as fh:
            check = pickle.load(fh)
            variables = check['model']
            backbone, size = check['backbone'], check['size']
        model = build_thera(3, backbone, size)
        return model, variables
    except Exception as e:
        logger.error(f"Erro ao carregar modelo: {str(e)}")
        raise


logger.info("Carregando Thera EDSR...")
model_edsr, variables_edsr = load_thera_model("prs-eth/thera-edsr-pro", "model.pkl")

# 2. Carregar SDXL + LoRA ---------------------------------------------------------------------
try:
    logger.info("Carregando SDXL + LoRA...")
    pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
        "stabilityai/stable-diffusion-xl-base-1.0",
        torch_dtype=torch.float32
    ).to(TORCH_DEVICE)
    pipe.load_lora_weights("KappaNeuro/bas-relief", weight_name="BAS-RELIEF.safetensors")
except Exception as e:
    logger.error(f"Erro ao carregar SDXL: {str(e)}")
    raise

# 3. Carregar modelo de profundidade ----------------------------------------------------------
try:
    logger.info("Carregando DPT Depth...")
    feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
    depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(TORCH_DEVICE)
except Exception as e:
    logger.error(f"Erro ao carregar DPT: {str(e)}")
    raise


def adjust_size(size):
    """Garante que o tamanho seja divisível por 8"""
    return (size // 8) * 8


def full_pipeline(image, prompt, scale_factor=2.0, progress=gr.Progress()):
    try:
        progress(0.1, desc="Pré-processamento...")

        # Converter e verificar imagem
        image = image.convert("RGB")
        source = np.array(image) / 255.0

        # Adicionar dimensão de batch se necessário
        if source.ndim == 3:
            source = source[np.newaxis, ...]

        # Ajustar tamanho alvo
        target_shape = (
            adjust_size(int(image.height * scale_factor)),
            adjust_size(int(image.width * scale_factor))
        )

        progress(0.3, desc="Super-resolução...")
        source_jax = jax.device_put(source, JAX_DEVICE)
        t = jnp.array([1.0 / (scale_factor ** 2)], dtype=jnp.float32)

        # Processar com Thera
        upscaled = model_edsr.apply(
            variables_edsr,
            source_jax,
            t,
            target_shape
        )

        # Remover dimensão de batch se necessário
        if upscaled.ndim == 4:
            upscaled = upscaled[0]

        upscaled_pil = Image.fromarray((np.array(upscaled) * 255).astype(np.uint8))

        progress(0.6, desc="Gerando Bas-Relief...")
        full_prompt = f"BAS-RELIEF {prompt}, ultra detailed engraving, 16K resolution"
        bas_relief = pipe(
            prompt=full_prompt,
            image=upscaled_pil,
            strength=0.7,
            num_inference_steps=25
        ).images[0]

        progress(0.8, desc="Calculando profundidade...")
        inputs = feature_extractor(bas_relief, return_tensors="pt").to(TORCH_DEVICE)
        with torch.no_grad():
            outputs = depth_model(**inputs)
            depth = outputs.predicted_depth

        depth_map = torch.nn.functional.interpolate(
            depth.unsqueeze(1),
            size=bas_relief.size[::-1],
            mode="bicubic"
        ).squeeze().cpu().numpy()

        depth_normalized = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
        depth_pil = Image.fromarray((depth_normalized * 255).astype(np.uint8))

        return upscaled_pil, bas_relief, depth_pil

    except Exception as e:
        logger.error(f"Erro: {str(e)}", exc_info=True)
        raise gr.Error(f"Erro: {str(e)}")


# Interface Gradio ----------------------------------------------------------------------------
with gr.Blocks(title="SuperRes + BasRelief") as app:
    gr.Markdown("## 🖼️ Super Resolução + Bas-Relief + Mapa de Profundidade")

    with gr.Row():
        with gr.Column():
            img_input = gr.Image(type="pil", label="Imagem de Entrada")
            prompt = gr.Textbox(
                label="Descrição",
                value="insanely detailed and complex engraving relief, ultra-high definition"
            )
            scale = gr.Slider(1.0, 4.0, value=2.0, label="Fator de Escala")
            btn = gr.Button("Processar")

        with gr.Column():
            img_upscaled = gr.Image(label="Super Resolvida")
            img_basrelief = gr.Image(label="Bas-Relief")
            img_depth = gr.Image(label="Profundidade")

    btn.click(
        full_pipeline,
        inputs=[img_input, prompt, scale],
        outputs=[img_upscaled, img_basrelief, img_depth]
    )

if __name__ == "__main__":
    app.launch()  # Sem compartilhamento público