sculpt / app.py
ds1david's picture
fixing bugs
d85fde4
raw
history blame
5.93 kB
import gradio as gr
import torch
import jax
import jax.numpy as jnp
import numpy as np
from PIL import Image
import pickle
import warnings
import logging
from huggingface_hub import hf_hub_download
from diffusers import StableDiffusionXLImg2ImgPipeline
from transformers import DPTImageProcessor, DPTForDepthEstimation
from model import build_thera
# Configuração de logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("processing.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Configurações e supressão de avisos
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
# Configurar dispositivos
JAX_DEVICE = jax.devices("cpu")[0]
TORCH_DEVICE = "cpu"
# 1. Carregar modelos do Thera ----------------------------------------------------------------
def load_thera_model(repo_id, filename):
try:
logger.info(f"Carregando modelo Thera de {repo_id}")
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(model_path, 'rb') as fh:
check = pickle.load(fh)
variables = check['model']
backbone, size = check['backbone'], check['size']
model = build_thera(3, backbone, size)
return model, variables
except Exception as e:
logger.error(f"Erro ao carregar modelo: {str(e)}")
raise
logger.info("Carregando Thera EDSR...")
model_edsr, variables_edsr = load_thera_model("prs-eth/thera-edsr-pro", "model.pkl")
# 2. Carregar SDXL + LoRA ---------------------------------------------------------------------
try:
logger.info("Carregando SDXL + LoRA...")
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float32
).to(TORCH_DEVICE)
pipe.load_lora_weights("KappaNeuro/bas-relief", weight_name="BAS-RELIEF.safetensors")
except Exception as e:
logger.error(f"Erro ao carregar SDXL: {str(e)}")
raise
# 3. Carregar modelo de profundidade ----------------------------------------------------------
try:
logger.info("Carregando DPT Depth...")
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(TORCH_DEVICE)
except Exception as e:
logger.error(f"Erro ao carregar DPT: {str(e)}")
raise
def adjust_size(size):
"""Garante que o tamanho seja divisível por 8"""
return (size // 8) * 8
def full_pipeline(image, prompt, scale_factor=2.0, progress=gr.Progress()):
try:
progress(0.1, desc="Pré-processamento...")
# Converter e verificar imagem
image = image.convert("RGB")
source = np.array(image) / 255.0
# Adicionar dimensão de batch se necessário
if source.ndim == 3:
source = source[np.newaxis, ...]
# Ajustar tamanho alvo
target_shape = (
adjust_size(int(image.height * scale_factor)),
adjust_size(int(image.width * scale_factor))
)
progress(0.3, desc="Super-resolução...")
source_jax = jax.device_put(source, JAX_DEVICE)
t = jnp.array([1.0 / (scale_factor ** 2)], dtype=jnp.float32)
# Processar com Thera
upscaled = model_edsr.apply(
variables_edsr,
source_jax,
t,
target_shape
)
# Remover dimensão de batch se necessário
if upscaled.ndim == 4:
upscaled = upscaled[0]
upscaled_pil = Image.fromarray((np.array(upscaled) * 255).astype(np.uint8))
progress(0.6, desc="Gerando Bas-Relief...")
full_prompt = f"BAS-RELIEF {prompt}, ultra detailed engraving, 16K resolution"
bas_relief = pipe(
prompt=full_prompt,
image=upscaled_pil,
strength=0.7,
num_inference_steps=25
).images[0]
progress(0.8, desc="Calculando profundidade...")
inputs = feature_extractor(bas_relief, return_tensors="pt").to(TORCH_DEVICE)
with torch.no_grad():
outputs = depth_model(**inputs)
depth = outputs.predicted_depth
depth_map = torch.nn.functional.interpolate(
depth.unsqueeze(1),
size=bas_relief.size[::-1],
mode="bicubic"
).squeeze().cpu().numpy()
depth_normalized = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
depth_pil = Image.fromarray((depth_normalized * 255).astype(np.uint8))
return upscaled_pil, bas_relief, depth_pil
except Exception as e:
logger.error(f"Erro: {str(e)}", exc_info=True)
raise gr.Error(f"Erro: {str(e)}")
# Interface Gradio ----------------------------------------------------------------------------
with gr.Blocks(title="SuperRes + BasRelief") as app:
gr.Markdown("## 🖼️ Super Resolução + Bas-Relief + Mapa de Profundidade")
with gr.Row():
with gr.Column():
img_input = gr.Image(type="pil", label="Imagem de Entrada")
prompt = gr.Textbox(
label="Descrição",
value="insanely detailed and complex engraving relief, ultra-high definition"
)
scale = gr.Slider(1.0, 4.0, value=2.0, label="Fator de Escala")
btn = gr.Button("Processar")
with gr.Column():
img_upscaled = gr.Image(label="Super Resolvida")
img_basrelief = gr.Image(label="Bas-Relief")
img_depth = gr.Image(label="Profundidade")
btn.click(
full_pipeline,
inputs=[img_input, prompt, scale],
outputs=[img_upscaled, img_basrelief, img_depth]
)
if __name__ == "__main__":
app.launch() # Sem compartilhamento público