sculpt / app.py
ds1david's picture
fixing bugs
19a6d73
raw
history blame
5.82 kB
# app.py
import gradio as gr
import torch
import jax
import jax.numpy as jnp
import numpy as np
from PIL import Image
import pickle
import logging
from huggingface_hub import hf_hub_download
from diffusers import StableDiffusionXLImg2ImgPipeline
from transformers import DPTImageProcessor, DPTForDepthEstimation
from model import build_thera
from utils import make_grid, interpolate_grid
# Configuração de logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.FileHandler("processing.log"), logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# Configurações
JAX_DEVICE = jax.devices("cpu")[0]
TORCH_DEVICE = "cpu"
def load_thera_model(repo_id: str, filename: str):
"""Carrega modelo com verificação de segurança"""
try:
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(model_path, 'rb') as fh:
checkpoint = pickle.load(fh)
return build_thera(3, checkpoint['backbone'], checkpoint['size']), checkpoint['model']
except Exception as e:
logger.error(f"Erro ao carregar modelo: {str(e)}")
raise
# Inicialização dos modelos
try:
logger.info("Carregando modelos...")
model_edsr, params_edsr = load_thera_model("prs-eth/thera-edsr-pro", "model.pkl")
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float32
).to(TORCH_DEVICE)
pipe.load_lora_weights("KappaNeuro/bas-relief", weight_name="BAS-RELIEF.safetensors")
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(TORCH_DEVICE)
except Exception as e:
logger.error(f"Falha na inicialização: {str(e)}")
raise
def adjust_size(original: int, scale: float) -> int:
"""Ajuste de tamanho com limites seguros"""
scaled = int(original * scale)
adjusted = (scaled // 8) * 8 # Divisível por 8
return max(32, adjusted) # Mínimo absoluto
def full_pipeline(image: Image.Image, prompt: str, scale_factor: float = 2.0):
"""Pipeline completo com tratamento robusto"""
try:
# Pré-processamento
image = image.convert("RGB")
orig_w, orig_h = image.size
# Cálculo do tamanho alvo
new_h = adjust_size(orig_h, scale_factor)
new_w = adjust_size(orig_w, scale_factor)
logger.info(f"Redimensionando: {orig_h}x{orig_w}{new_h}x{new_w}")
# Gerar grid de coordenadas
coords = make_grid((new_h, new_w))
logger.debug(f"Dimensões do grid: {coords.shape}")
# Verificação crítica
if coords.shape[1:3] != (new_h, new_w):
raise ValueError(f"Grid incorreto: {coords.shape[1:3]} vs ({new_h}, {new_w})")
# Super-resolução
source = jnp.array(image).astype(jnp.float32) / 255.0
source = source[jnp.newaxis, ...] # Adicionar batch
t = jnp.array([1.0 / (scale_factor ** 2)], dtype=jnp.float32)
upscaled = model_edsr.apply(params_edsr, source, t, (new_h, new_w))
# Pós-processamento
upscaled_img = Image.fromarray((np.array(upscaled[0]) * 255).astype(np.uint8))
# Bas-Relief
result = pipe(
prompt=f"BAS-RELIEF {prompt}, ultra detailed, 8K resolution",
image=upscaled_img,
strength=0.7,
num_inference_steps=30
)
bas_relief = result.images[0]
# Mapa de profundidade
inputs = feature_extractor(bas_relief, return_tensors="pt").to(TORCH_DEVICE)
with torch.no_grad():
depth = depth_model(**inputs).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth.unsqueeze(1),
size=bas_relief.size[::-1],
mode="bicubic"
).squeeze().cpu().numpy()
# Normalização
depth_min = depth_map.min()
depth_max = depth_map.max()
depth_normalized = (depth_map - depth_min) / (depth_max - depth_min + 1e-8)
depth_img = Image.fromarray((depth_normalized * 255).astype(np.uint8))
return upscaled_img, bas_relief, depth_img
except Exception as e:
logger.error(f"ERRO NO PIPELINE: {str(e)}", exc_info=True)
raise gr.Error(f"Processamento falhou: {str(e)}")
# Interface
with gr.Blocks(title="SuperRes+BasRelief", theme=gr.themes.Default()) as app:
gr.Markdown("# 🖼️ Super Resolução + 🗿 Bas-Relief + 🗺️ Mapa de Profundidade")
with gr.Row():
with gr.Column():
img_input = gr.Image(label="Imagem de Entrada", type="pil")
prompt = gr.Textbox(
label="Descrição do Relevo",
value="Ainsanely detailed and complex engraving relief, ultra-high definition",
placeholder="Descreva o estilo desejado..."
)
scale = gr.Slider(1.0, 4.0, value=2.0, label="Fator de Escala")
btn = gr.Button("Processar Imagem", variant="primary")
with gr.Column():
gr.Markdown("## Resultados")
with gr.Tabs():
with gr.TabItem("Super Resolução"):
upscaled_output = gr.Image(label="Resultado Super Resolução")
with gr.TabItem("Bas-Relief"):
basrelief_output = gr.Image(label="Relevo Gerado")
with gr.TabItem("Profundidade"):
depth_output = gr.Image(label="Mapa de Profundidade")
btn.click(
full_pipeline,
inputs=[img_input, prompt, scale],
outputs=[upscaled_output, basrelief_output, depth_output]
)
if __name__ == "__main__":
app.launch(server_name="0.0.0.0", server_port=7860)