New logic
Browse files- app.py +77 -55
- requirements.txt +2 -0
app.py
CHANGED
@@ -3,83 +3,105 @@ import torch
|
|
3 |
import jax
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
|
|
|
|
6 |
from diffusers import StableDiffusionXLImg2ImgPipeline
|
7 |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
8 |
-
from
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
|
14 |
-
# 1. Carregar modelos do Thera (EDSR/RDN)
|
15 |
-
# (Implementar conforme código original do Thera)
|
16 |
-
model_edsr, params_edsr = None, None # Carregar usando pickle/HF Hub
|
17 |
|
18 |
-
#
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
21 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
22 |
torch_dtype=torch.float32
|
23 |
-
).to(
|
24 |
pipe.load_lora_weights("KappaNeuro/bas-relief", weight_name="BAS-RELIEF.safetensors")
|
25 |
|
26 |
-
# 3. Carregar modelo de profundidade
|
27 |
-
print("Carregando DPT...")
|
28 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
29 |
-
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(
|
30 |
-
|
31 |
-
|
32 |
-
def enhance_depth_map(depth_arr):
|
33 |
-
depth_normalized = (depth_arr - depth_arr.min()) / (depth_arr.max() - depth_arr.min() + 1e-8)
|
34 |
-
return Image.fromarray((depth_normalized * 255).astype(np.uint8))
|
35 |
|
36 |
|
|
|
37 |
def full_pipeline(image, prompt, scale_factor=2.0):
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
with gr.Row():
|
74 |
with gr.Column():
|
75 |
img_input = gr.Image(type="pil", label="Imagem de Entrada")
|
76 |
-
prompt = gr.Textbox("
|
77 |
scale = gr.Slider(1.0, 4.0, value=2.0, label="Fator de Escala")
|
78 |
btn = gr.Button("Processar")
|
79 |
|
80 |
with gr.Column():
|
81 |
-
img_upscaled = gr.Image(label="
|
82 |
-
img_basrelief = gr.Image(label="
|
83 |
img_depth = gr.Image(label="Mapa de Profundidade")
|
84 |
|
85 |
btn.click(
|
|
|
3 |
import jax
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
+
import pickle
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
from diffusers import StableDiffusionXLImg2ImgPipeline
|
9 |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
10 |
+
from model import build_thera # Importar do código original do Thera
|
11 |
|
12 |
+
# Configurar dispositivos
|
13 |
+
JAX_DEVICE = jax.devices("cpu")[0]
|
14 |
+
TORCH_DEVICE = "cpu"
|
15 |
|
|
|
|
|
|
|
16 |
|
17 |
+
# 1. Carregar modelos do Thera ------------------------------------------------------------------
|
18 |
+
def load_thera_model(repo_id, filename):
|
19 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
20 |
+
with open(model_path, 'rb') as fh:
|
21 |
+
check = pickle.load(fh)
|
22 |
+
params, backbone, size = check['model'], check['backbone'], check['size']
|
23 |
+
model = build_thera(3, backbone, size)
|
24 |
+
return model, params
|
25 |
+
|
26 |
+
|
27 |
+
print("Carregando Thera EDSR...")
|
28 |
+
model_edsr, params_edsr = load_thera_model("prs-eth/thera-edsr-pro", "model.pkl")
|
29 |
+
|
30 |
+
# 2. Carregar SDXL + LoRA ----------------------------------------------------------------------
|
31 |
+
print("Carregando SDXL + LoRA...")
|
32 |
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
33 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
34 |
torch_dtype=torch.float32
|
35 |
+
).to(TORCH_DEVICE)
|
36 |
pipe.load_lora_weights("KappaNeuro/bas-relief", weight_name="BAS-RELIEF.safetensors")
|
37 |
|
38 |
+
# 3. Carregar modelo de profundidade -----------------------------------------------------------
|
39 |
+
print("Carregando DPT Depth...")
|
40 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
41 |
+
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(TORCH_DEVICE)
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
|
44 |
+
# Pipeline principal ---------------------------------------------------------------------------
|
45 |
def full_pipeline(image, prompt, scale_factor=2.0):
|
46 |
+
try:
|
47 |
+
# 1. Super Resolução com Thera
|
48 |
+
source = np.array(image.convert("RGB")) / 255.0
|
49 |
+
target_shape = (int(image.height * scale_factor), int(image.width * scale_factor))
|
50 |
+
|
51 |
+
# Converter para JAX array
|
52 |
+
source_jax = jax.device_put(source, JAX_DEVICE)
|
53 |
+
|
54 |
+
# Processar com Thera
|
55 |
+
upscaled = model_edsr.apply(
|
56 |
+
params_edsr,
|
57 |
+
source_jax,
|
58 |
+
target_shape,
|
59 |
+
do_ensemble=True
|
60 |
+
)
|
61 |
+
upscaled_pil = Image.fromarray((np.array(upscaled) * 255).astype(np.uint8))
|
62 |
+
|
63 |
+
# 2. Gerar Bas-Relief
|
64 |
+
full_prompt = f"BAS-RELIEF {prompt}, intricate carving, marble relief"
|
65 |
+
bas_relief = pipe(
|
66 |
+
prompt=full_prompt,
|
67 |
+
image=upscaled_pil,
|
68 |
+
strength=0.7,
|
69 |
+
num_inference_steps=25,
|
70 |
+
guidance_scale=7.5
|
71 |
+
).images[0]
|
72 |
+
|
73 |
+
# 3. Calcular Depth Map
|
74 |
+
inputs = feature_extractor(bas_relief, return_tensors="pt").to(TORCH_DEVICE)
|
75 |
+
with torch.no_grad():
|
76 |
+
outputs = depth_model(**inputs)
|
77 |
+
depth = outputs.predicted_depth
|
78 |
+
|
79 |
+
depth_map = torch.nn.functional.interpolate(
|
80 |
+
depth.unsqueeze(1),
|
81 |
+
size=bas_relief.size[::-1],
|
82 |
+
mode="bicubic"
|
83 |
+
).squeeze().cpu().numpy()
|
84 |
+
|
85 |
+
return upscaled_pil, bas_relief, (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
86 |
+
|
87 |
+
except Exception as e:
|
88 |
+
raise gr.Error(f"Erro no processamento: {str(e)}")
|
89 |
+
|
90 |
+
|
91 |
+
# Interface Gradio -----------------------------------------------------------------------------
|
92 |
+
with gr.Blocks(title="Super Res + Bas-Relief") as app:
|
93 |
+
gr.Markdown("## 🔍 Super Resolução + 🗿 Bas-Relief + 🗺️ Profundidade")
|
94 |
|
95 |
with gr.Row():
|
96 |
with gr.Column():
|
97 |
img_input = gr.Image(type="pil", label="Imagem de Entrada")
|
98 |
+
prompt = gr.Textbox("insanely detailed and complex engraving relief, ultra-high definition, rich in detail, and 16K resolution.", label="Descrição")
|
99 |
scale = gr.Slider(1.0, 4.0, value=2.0, label="Fator de Escala")
|
100 |
btn = gr.Button("Processar")
|
101 |
|
102 |
with gr.Column():
|
103 |
+
img_upscaled = gr.Image(label="Super Resolvida")
|
104 |
+
img_basrelief = gr.Image(label="Bas-Relief")
|
105 |
img_depth = gr.Image(label="Mapa de Profundidade")
|
106 |
|
107 |
btn.click(
|
requirements.txt
CHANGED
@@ -7,6 +7,7 @@ diffusers
|
|
7 |
einops==0.6.1
|
8 |
flax==0.6.10
|
9 |
flaxmodels==0.1.3
|
|
|
10 |
jax==0.4.11
|
11 |
jaxlib==0.4.11+cuda11.cudnn86
|
12 |
jaxtyping==0.2.20
|
@@ -24,6 +25,7 @@ opt-einsum==3.3.0
|
|
24 |
optax==0.2.0
|
25 |
orbax-checkpoint==0.2.4
|
26 |
peft
|
|
|
27 |
scipy==1.10.1
|
28 |
timm==0.9.6
|
29 |
torch
|
|
|
7 |
einops==0.6.1
|
8 |
flax==0.6.10
|
9 |
flaxmodels==0.1.3
|
10 |
+
huggingface_hub
|
11 |
jax==0.4.11
|
12 |
jaxlib==0.4.11+cuda11.cudnn86
|
13 |
jaxtyping==0.2.20
|
|
|
25 |
optax==0.2.0
|
26 |
orbax-checkpoint==0.2.4
|
27 |
peft
|
28 |
+
pillow
|
29 |
scipy==1.10.1
|
30 |
timm==0.9.6
|
31 |
torch
|