First commit
Browse files- app.py +96 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from diffusers import StableDiffusionXLImg2ImgPipeline
|
5 |
+
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
6 |
+
from PIL import Image, ImageEnhance, ImageOps
|
7 |
+
|
8 |
+
device = "cpu" # or "cuda" if you have a GPU
|
9 |
+
torch_dtype = torch.float32
|
10 |
+
|
11 |
+
print("Loading SDXL Img2Img model...")
|
12 |
+
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
13 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
14 |
+
torch_dtype=torch_dtype
|
15 |
+
).to(device)
|
16 |
+
|
17 |
+
print("Loading bas-relief LoRA weights with PEFT...")
|
18 |
+
pipe.load_lora_weights(
|
19 |
+
"KappaNeuro/bas-relief",
|
20 |
+
weight_name="BAS-RELIEF.safetensors",
|
21 |
+
peft_backend="peft"
|
22 |
+
)
|
23 |
+
|
24 |
+
print("Loading DPT Depth Model...")
|
25 |
+
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
26 |
+
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(device)
|
27 |
+
|
28 |
+
|
29 |
+
def enhance_depth_map(depth_arr: np.ndarray) -> Image.Image:
|
30 |
+
d_min, d_max = depth_arr.min(), depth_arr.max()
|
31 |
+
depth_stretched = (depth_arr - d_min) / (d_max - d_min + 1e-8)
|
32 |
+
depth_stretched = (depth_stretched * 255).astype(np.uint8)
|
33 |
+
|
34 |
+
depth_pil = Image.fromarray(depth_stretched)
|
35 |
+
depth_pil = ImageOps.autocontrast(depth_pil)
|
36 |
+
|
37 |
+
enhancer = ImageEnhance.Sharpness(depth_pil)
|
38 |
+
depth_pil = enhancer.enhance(2.0)
|
39 |
+
|
40 |
+
return depth_pil
|
41 |
+
|
42 |
+
|
43 |
+
def generate_bas_relief_and_depth(input_image: Image.Image):
|
44 |
+
# Redimensionar a imagem para o tamanho esperado
|
45 |
+
input_image = input_image.resize((512, 512))
|
46 |
+
|
47 |
+
# Prompt fixo para ativar o LoRA
|
48 |
+
prompt = "BAS-RELIEF"
|
49 |
+
|
50 |
+
print("Gerando imagem no estilo baixo-relevo...")
|
51 |
+
result = pipe(
|
52 |
+
prompt=prompt,
|
53 |
+
image=input_image,
|
54 |
+
strength=0.7, # Controla a intensidade da transformação
|
55 |
+
num_inference_steps=15,
|
56 |
+
guidance_scale=7.5
|
57 |
+
)
|
58 |
+
generated_image = result.images[0]
|
59 |
+
|
60 |
+
print("Calculando mapa de profundidade...")
|
61 |
+
inputs = feature_extractor(generated_image, return_tensors="pt").to(device)
|
62 |
+
with torch.no_grad():
|
63 |
+
outputs = depth_model(**inputs)
|
64 |
+
predicted_depth = outputs.predicted_depth
|
65 |
+
|
66 |
+
prediction = torch.nn.functional.interpolate(
|
67 |
+
predicted_depth.unsqueeze(1),
|
68 |
+
size=generated_image.size[::-1],
|
69 |
+
mode="bicubic",
|
70 |
+
align_corners=False
|
71 |
+
).squeeze()
|
72 |
+
|
73 |
+
depth_map_pil = enhance_depth_map(prediction.cpu().numpy())
|
74 |
+
|
75 |
+
return generated_image, depth_map_pil
|
76 |
+
|
77 |
+
|
78 |
+
title = "Conversor para Baixo-relevo (SDXL + LoRA) com Mapa de Profundidade"
|
79 |
+
description = (
|
80 |
+
"Carrega stable-diffusion-xl-base-1.0 no CPU, aplica LoRA de 'KappaNeuro/bas-relief' "
|
81 |
+
"para transformar imagens em baixo-relevo e calcula o mapa de profundidade correspondente."
|
82 |
+
)
|
83 |
+
|
84 |
+
iface = gr.Interface(
|
85 |
+
fn=generate_bas_relief_and_depth,
|
86 |
+
inputs=gr.Image(label="Imagem de Entrada", type="pil"),
|
87 |
+
outputs=[
|
88 |
+
gr.Image(label="Imagem em Baixo-relevo"),
|
89 |
+
gr.Image(label="Mapa de Profundidade")
|
90 |
+
],
|
91 |
+
title=title,
|
92 |
+
description=description
|
93 |
+
)
|
94 |
+
|
95 |
+
if __name__ == "__main__":
|
96 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
open3d
|
2 |
+
peft
|
3 |
+
accelerate
|
4 |
+
diffusers>=0.20.0
|
5 |
+
transformers>=4.30.0
|
6 |
+
torch
|
7 |
+
gradio
|
8 |
+
Pillow
|
9 |
+
safetensors
|