import gradio as gr import torch import jax import numpy as np from PIL import Image import pickle from huggingface_hub import hf_hub_download from diffusers import StableDiffusionXLImg2ImgPipeline from transformers import DPTFeatureExtractor, DPTForDepthEstimation from model import build_thera # Importar do código original do Thera # Configurar dispositivos JAX_DEVICE = jax.devices("cpu")[0] TORCH_DEVICE = "cpu" # 1. Carregar modelos do Thera ------------------------------------------------------------------ def load_thera_model(repo_id, filename): model_path = hf_hub_download(repo_id=repo_id, filename=filename) with open(model_path, 'rb') as fh: check = pickle.load(fh) params, backbone, size = check['model'], check['backbone'], check['size'] model = build_thera(3, backbone, size) return model, params print("Carregando Thera EDSR...") model_edsr, params_edsr = load_thera_model("prs-eth/thera-edsr-pro", "model.pkl") # 2. Carregar SDXL + LoRA ---------------------------------------------------------------------- print("Carregando SDXL + LoRA...") pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float32 ).to(TORCH_DEVICE) pipe.load_lora_weights("KappaNeuro/bas-relief", weight_name="BAS-RELIEF.safetensors") # 3. Carregar modelo de profundidade ----------------------------------------------------------- print("Carregando DPT Depth...") feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(TORCH_DEVICE) # Pipeline principal --------------------------------------------------------------------------- def full_pipeline(image, prompt, scale_factor=2.0): try: # 1. Super Resolução com Thera source = np.array(image.convert("RGB")) / 255.0 target_shape = (int(image.height * scale_factor), int(image.width * scale_factor)) # Converter para JAX array source_jax = jax.device_put(source, JAX_DEVICE) # Processar com Thera upscaled = model_edsr.apply( params_edsr, source_jax, target_shape, do_ensemble=True ) upscaled_pil = Image.fromarray((np.array(upscaled) * 255).astype(np.uint8)) # 2. Gerar Bas-Relief full_prompt = f"BAS-RELIEF {prompt}, intricate carving, marble relief" bas_relief = pipe( prompt=full_prompt, image=upscaled_pil, strength=0.7, num_inference_steps=25, guidance_scale=7.5 ).images[0] # 3. Calcular Depth Map inputs = feature_extractor(bas_relief, return_tensors="pt").to(TORCH_DEVICE) with torch.no_grad(): outputs = depth_model(**inputs) depth = outputs.predicted_depth depth_map = torch.nn.functional.interpolate( depth.unsqueeze(1), size=bas_relief.size[::-1], mode="bicubic" ).squeeze().cpu().numpy() return upscaled_pil, bas_relief, (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) except Exception as e: raise gr.Error(f"Erro no processamento: {str(e)}") # Interface Gradio ----------------------------------------------------------------------------- with gr.Blocks(title="Super Res + Bas-Relief") as app: gr.Markdown("## 🔍 Super Resolução + 🗿 Bas-Relief + 🗺️ Profundidade") with gr.Row(): with gr.Column(): img_input = gr.Image(type="pil", label="Imagem de Entrada") prompt = gr.Textbox("insanely detailed and complex engraving relief, ultra-high definition, rich in detail, and 16K resolution.", label="Descrição") scale = gr.Slider(1.0, 4.0, value=2.0, label="Fator de Escala") btn = gr.Button("Processar") with gr.Column(): img_upscaled = gr.Image(label="Super Resolvida") img_basrelief = gr.Image(label="Bas-Relief") img_depth = gr.Image(label="Mapa de Profundidade") btn.click( full_pipeline, inputs=[img_input, prompt, scale], outputs=[img_upscaled, img_basrelief, img_depth] ) if __name__ == "__main__": app.launch()