from functools import partial import jax import jax.numpy as jnp import numpy as np def repeat_vmap(fun, in_axes=None): if in_axes is None: in_axes = [0] for axes in in_axes: fun = jax.vmap(fun, in_axes=axes) return fun def make_grid(patch_size: int | tuple[int, int]): if isinstance(patch_size, int): patch_size = (max(1, patch_size), max(1, patch_size)) offset_h, offset_w = 1 / (2 * np.array(patch_size)) space_h = np.linspace(-0.5 + offset_h, 0.5 - offset_h, patch_size[0]) space_w = np.linspace(-0.5 + offset_w, 0.5 - offset_w, patch_size[1]) grid = np.stack(np.meshgrid(space_h, space_w, indexing='ij'), axis=-1) return grid[np.newaxis, ...] # Adiciona dimensão de batch def interpolate_grid(coords, grid, order=0): """Args: coords: Tensor de shape (B, H, W, 2) ou (H, W, 2) grid: Tensor de shape (B, H', W', C) order: default 0 """ try: # Converter para array JAX e ajustar dimensões coords = jnp.asarray(coords) while coords.ndim < 4: coords = coords[jnp.newaxis, ...] # Verificação final de dimensões if coords.shape[-1] != 2 or coords.ndim != 4: raise ValueError(f"Formato inválido: {coords.shape}. Esperado (B, H, W, 2)") # Transformação de coordenadas coords = coords.transpose((0, 3, 1, 2)) coords = coords.at[:, 0].set(coords[:, 0] * grid.shape[-3] + (grid.shape[-3] - 1) / 2) coords = coords.at[:, 1].set(coords[:, 1] * grid.shape[-2] + (grid.shape[-2] - 1) / 2) # Função de interpolação vetorizada map_fn = jax.vmap(jax.vmap( partial(jax.scipy.ndimage.map_coordinates, order=order, mode='nearest'), in_axes=(2, None), out_axes=2 )) return map_fn(grid, coords) except Exception as e: raise RuntimeError(f"Falha na interpolação: {str(e)}") from e