AIImage / app.py
dschandra's picture
Create app.py
2c87105 verified
raw
history blame
1.76 kB
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import random
# Placeholder function for image generation (replace with actual model inference if desired)
def generate_image(text_description):
# Create a blank image
img = Image.new('RGB', (512, 512), color=(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)))
draw = ImageDraw.Draw(img)
# Add text to the image (simulating a generated image based on description)
try:
font = ImageFont.truetype("arial.ttf", 40)
except:
font = ImageFont.load_default()
# Wrap text description if too long
text = text_description if len(text_description) < 30 else text_description[:27] + "..."
draw.text((20, 20), f"Generated: {text}", font=font, fill=(255, 255, 255))
# Here you could integrate a real model like Stable Diffusion
# Example (commented out):
# from diffusers import StableDiffusionPipeline
# pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
# img = pipe(text_description).images[0]
return img
# Gradio interface
with gr.Blocks(title="Text-to-Image Generator") as demo:
gr.Markdown("# Text-to-Image Generator")
gr.Markdown("Enter a description below and generate an image!")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label="Description", placeholder="Type your image description here...")
generate_btn = gr.Button("Generate Image")
with gr.Column():
output_image = gr.Image(label="Generated Image")
# Connect the button to the function
generate_btn.click(fn=generate_image, inputs=text_input, outputs=output_image)
# Launch the app
demo.launch()