dschandra commited on
Commit
ea1dace
·
verified ·
1 Parent(s): 9a5fbc3

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -0
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import BlipProcessor, BlipForConditionalGeneration
3
+
4
+ # Load the BLIP model and processor from Hugging Face
5
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
6
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
7
+
8
+ def generate_caption(image):
9
+ # Process the image
10
+ inputs = processor(images=image, return_tensors="pt")
11
+
12
+ # Generate caption using BLIP model
13
+ out = model.generate(**inputs)
14
+
15
+ # Decode the output into a string
16
+ caption = processor.decode(out[0], skip_special_tokens=True)
17
+
18
+ # Custom description to match the theme of surroundings
19
+ custom_description = """
20
+ A tropical escape where the azure waves meet the golden sand, sheltered by palm trees and embraced by the distant hills.
21
+ A place to unwind, breathe, and reconnect with nature.
22
+ """
23
+
24
+ return caption + "\n" + custom_description
25
+
26
+ # Create the Gradio interface
27
+ iface = gr.Interface(fn=generate_caption,
28
+ inputs=gr.Image(type="pil"),
29
+ outputs=gr.Textbox(),
30
+ title="Image Caption Generator",
31
+ description="Upload an image and get a description with the surroundings of the image.")
32
+
33
+ if __name__ == "__main__":
34
+ iface.launch()