Spaces:
Sleeping
Sleeping
File size: 20,235 Bytes
f7261de 3ac3d03 3f8fd70 3ac3d03 5e0790c 419d661 3ac3d03 419d661 5e0790c 419d661 cc1f300 419d661 3ac3d03 5e0790c 3ac3d03 f7261de 3ac3d03 f7261de 3f8fd70 f7261de 3f8fd70 dae8bf7 3ac3d03 419d661 3ac3d03 cc1f300 419d661 cc1f300 419d661 dae8bf7 3ac3d03 3f8fd70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from io import BytesIO
import os
import logging
import base64
import shutil
import tempfile
from simple_salesforce import Salesforce
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from fastapi import FastAPI, Form, File, UploadFile
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Configure logging to show detailed messages
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Salesforce credentials (loaded from environment variables)
SALESFORCE_USERNAME = os.getenv("SALESFORCE_USERNAME")
SALESFORCE_PASSWORD = os.getenv("SALESFORCE_PASSWORD")
SALESFORCE_SECURITY_TOKEN = os.getenv("SALESFORCE_SECURITY_TOKEN")
SALESFORCE_DOMAIN = os.getenv("SALESFORCE_DOMAIN", "login")
# Validate that credentials are set
if not all([SALESFORCE_USERNAME, SALESFORCE_PASSWORD, SALESFORCE_SECURITY_TOKEN]):
logger.error("Salesforce credentials not set in environment variables.")
raise ValueError("Missing Salesforce credentials in environment variables.")
logger.debug("Using Salesforce credentials - Username and Security Token loaded from environment variables.")
# Function to authenticate with Salesforce
def get_salesforce_connection():
try:
logger.debug("Attempting to connect to Salesforce...")
sf = Salesforce(
username=SALESFORCE_USERNAME,
password=SALESFORCE_PASSWORD,
security_token=SALESFORCE_SECURITY_TOKEN,
domain=SALESFORCE_DOMAIN
)
logger.info("Salesforce connection successful.")
result = sf.query("SELECT Id FROM User LIMIT 1")
logger.debug(f"Successfully queried Salesforce to confirm connection. Result: {result}")
return sf
except Exception as e:
logger.error(f"Failed to connect to Salesforce: {str(e)}", exc_info=True)
return None
# Function to upload a file to Salesforce as a ContentVersion
def upload_file_to_salesforce(file_path, file_name, record_id=None):
try:
sf = get_salesforce_connection()
if not sf:
logger.error("Salesforce connection failed. Cannot upload file.")
return None
with open(file_path, "rb") as f:
file_data = f.read()
encoded_file_data = base64.b64encode(file_data).decode('utf-8')
logger.debug(f"Uploading file {file_name} for record ID: {record_id}")
content_version_data = {
"Title": file_name,
"PathOnClient": file_name,
"VersionData": encoded_file_data,
}
if record_id:
content_version_data["FirstPublishLocationId"] = record_id
content_version = sf.ContentVersion.create(content_version_data)
logger.info(f"File uploaded to Salesforce with ContentVersion ID: {content_version['id']}")
return content_version["id"]
except Exception as e:
logger.error(f"Error uploading file to Salesforce: {str(e)}", exc_info=True)
return None
# Function to generate PDF
def generate_pdf(record_data):
try:
logger.debug("Generating PDF...")
pdf_file = BytesIO()
c = canvas.Canvas(pdf_file, pagesize=letter)
c.drawString(100, 750, f"Project Title: {record_data['project_title']}")
c.drawString(100, 730, f"Estimated Duration: {record_data['estimated_duration']} days")
c.drawString(100, 710, f"AI Plan Score: {record_data['ai_plan_score']}%")
c.drawString(100, 690, f"Status: {record_data['status']}")
c.drawString(100, 670, f"Risk Tags: {record_data['risk_tags']}")
c.save()
pdf_file.seek(0)
logger.debug("PDF generated successfully.")
return pdf_file
except Exception as e:
logger.error(f"Error generating PDF: {str(e)}", exc_info=True)
return None
# Function to upload PDF to Salesforce and get its URL
def upload_pdf_to_salesforce(pdf_file, project_title, record_id=None):
try:
sf = get_salesforce_connection()
if not sf:
logger.error("Salesforce connection failed. Cannot upload PDF.")
return None, None
encoded_pdf_data = base64.b64encode(pdf_file.getvalue()).decode('utf-8')
logger.debug(f"Uploading PDF for project: {project_title}, record ID: {record_id}")
content_version_data = {
"Title": f"{project_title} - Gantt Chart PDF",
"PathOnClient": f"{project_title}_Gantt_Chart.pdf",
"VersionData": encoded_pdf_data,
}
if record_id:
content_version_data["FirstPublishLocationId"] = record_id
content_version = sf.ContentVersion.create(content_version_data)
content_version_id = content_version["id"]
logger.info(f"PDF uploaded to Salesforce with ContentVersion ID: {content_version_id}")
result = sf.query(f"SELECT Id, ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'")
if not result['records']:
logger.error("No records returned for ContentVersion query")
return content_version_id, None
content_document_id = result['records'][0]['ContentDocumentId']
file_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/version/download/{content_version_id}"
logger.debug(f"Generated PDF URL: {file_url}")
return content_version_id, file_url
except Exception as e:
logger.error(f"Error uploading PDF to Salesforce: {str(e)}", exc_info=True)
return None, None
# Function to create or update project timeline in Salesforce
def send_to_salesforce(project_title, gantt_chart_url, ai_plan_score, estimated_duration, status="Draft", record_id=None, location="", weather_type="", work_items=None, work_items_id=None):
try:
logger.debug("Starting send_to_salesforce function...")
sf = get_salesforce_connection()
if not sf:
logger.error("Salesforce connection failed. Cannot proceed with record creation/update.")
return None
try:
obj_description = sf.AI_Project_Timeline__c.describe()
logger.debug("AI_Project_Timeline__c object exists and is accessible.")
available_fields = [field['name'] for field in obj_description['fields']]
logger.debug(f"Available fields on AI_Project_Timeline__c: {available_fields}")
except Exception as e:
logger.error(f"Error: AI_Project_Timeline__c object not found or inaccessible: {str(e)}")
return None
sf_data = {
"Name": project_title[:80],
"Project_Title__c": project_title,
"Estimated_Duration__c": estimated_duration,
"AI_Plan_Score__c": ai_plan_score,
"Status__c": status,
"Location__c": location,
"Weather_Type__c": weather_type,
}
if gantt_chart_url:
sf_data["Gantt_Chart_PDF__c"] = gantt_chart_url
if work_items_id:
sf_data["Work_Items__c"] = work_items_id
logger.debug(f"Prepared Salesforce data: {sf_data}")
if record_id:
try:
logger.info(f"Attempting to update Salesforce record with ID: {record_id}")
sf.AI_Project_Timeline__c.update(record_id, sf_data)
logger.info(f"Successfully updated Salesforce record with ID: {record_id}")
return record_id
except Exception as e:
logger.error(f"Error updating record {record_id}: {str(e)}")
record_id = None
logger.info("Creating new Salesforce record...")
project_record = sf.AI_Project_Timeline__c.create(sf_data)
if not project_record.get('id'):
logger.error("Failed to create record, no ID returned")
return None
new_record_id = project_record['id']
logger.info(f"Created new Salesforce record with ID: {new_record_id}")
return new_record_id
except Exception as e:
logger.error(f"Error sending data to Salesforce: {str(e)}", exc_info=True)
if hasattr(e, 'content') and e.content:
logger.error(f"Salesforce API response: {e.content}")
return None
# Function to generate Gantt chart
def generate_project_timeline(boq_file, weather, workforce, location, project_title):
temp_dir = None
try:
logger.debug("Processing BOQ data...")
if not boq_file:
raise ValueError("No file uploaded")
temp_dir = tempfile.mkdtemp()
output_filename = f"gantt_chart_{project_title.replace(' ', '')}{id(boq_file)}.png"
output_path = os.path.join(temp_dir, output_filename)
logger.debug(f"Gantt chart will be saved to: {output_path}")
if isinstance(boq_file, str):
df = pd.read_csv(boq_file)
else:
df = pd.read_csv(boq_file.name)
if "Task Name" not in df.columns or "Duration" not in df.columns:
raise ValueError("CSV must contain 'Task Name' and 'Duration' columns")
task_names = df["Task Name"].tolist()
task_durations = df["Duration"].tolist()
logger.debug(f"Tasks: {task_names}, Durations: {task_durations}")
fig, ax = plt.subplots(figsize=(10, 5))
ax.barh(task_names, task_durations, color="skyblue")
ax.set_xlabel("Duration (days)")
ax.set_title("Project Timeline Gantt Chart")
fig.savefig(output_path, format="png", bbox_inches="tight")
plt.close(fig)
risk_tags = [
f"{task} - {'High' if weather == 'rainy' and duration > 5 else 'Low'} Risk (Weather)"
for task, duration in zip(task_names, task_durations)
]
risk_tags_str = "\n".join(risk_tags)
logger.debug(f"Generated risk tags: {risk_tags_str}")
logger.info("Gantt chart and risk tags generated successfully.")
return output_path, risk_tags_str, temp_dir
except Exception as e:
logger.error(f"Error generating project timeline: {str(e)}", exc_info=True)
if temp_dir and os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
return None, str(e), None
# Gradio interface function
def gradio_interface(boq_file, weather, workforce, location, project_title):
temp_dir = None
try:
logger.info("Starting gradio_interface...")
if not boq_file:
return None, "Error: No BOQ file uploaded"
boq_file_path = boq_file.name if hasattr(boq_file, 'name') else boq_file
file_path, risk_tags, temp_dir = generate_project_timeline(boq_file_path, weather, workforce, location, project_title)
if not file_path:
return None, f"Error: Failed to generate timeline: {risk_tags}"
df = pd.read_csv(boq_file_path)
estimated_duration = sum(df["Duration"])
ai_plan_score = min(100, max(0, 100 - (estimated_duration / 100)))
logger.debug(f"Estimated duration: {estimated_duration}, AI plan score: {ai_plan_score}")
record_id = send_to_salesforce(
project_title=project_title,
gantt_chart_url="",
ai_plan_score=ai_plan_score,
estimated_duration=estimated_duration,
status="Draft",
record_id=None,
location=location,
weather_type=weather
)
if not record_id:
return None, f"Error: Failed to create Salesforce record - check logs for details\n\nRisk Tags:\n{risk_tags}"
work_items_id = upload_file_to_salesforce(boq_file_path, "Boq_data.csv", record_id)
if not work_items_id:
logger.warning("Failed to upload BOQ file, but proceeding with record creation")
record_data = {
"project_title": project_title,
"estimated_duration": estimated_duration,
"ai_plan_score": ai_plan_score,
"status": "Draft",
"risk_tags": risk_tags,
}
pdf_file = generate_pdf(record_data)
if not pdf_file:
logger.warning("Failed to generate PDF, but proceeding with record creation")
pdf_content_id, pdf_url = None, None
if pdf_file:
pdf_content_id, pdf_url = upload_pdf_to_salesforce(pdf_file, project_title, record_id)
if not pdf_content_id:
logger.warning("Failed to upload PDF, but proceeding with record creation")
update_result = send_to_salesforce(
project_title=project_title,
gantt_chart_url=pdf_url if pdf_url else "",
ai_plan_score=ai_plan_score,
estimated_duration=estimated_duration,
status="Draft",
record_id=record_id,
location=location,
weather_type=weather,
work_items_id=work_items_id if work_items_id else ""
)
if not update_result:
logger.warning("Failed to update record with PDF URL, but record was created")
image_content_id = upload_file_to_salesforce(fileLf_path, f"{project_title}_Gantt_Chart.png", record_id)
image_url = None
if image_content_id:
sf = get_salesforce_connection()
if sf:
image_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/version/download/{image_content_id}"
logger.debug(f"Generated image URL: {image_url}")
logger.info("Gradio interface completed successfully.")
return image_url if image_url else file_path, f"Successfully created Salesforce record ID: {record_id}\n\nRisk Tags:\n{risk_tags}"
except Exception as e:
logger.error(f"Error in Gradio interface: {str(e)}", exc_info=True)
return None, f"Error in Gradio interface: {str(e)}"
finally:
if temp_dir and os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
logger.debug(f"Cleaned up temporary directory: {temp_dir}")
# Create Gradio interface
demo = gr.Blocks(theme="default")
with demo:
gr.Markdown("## AI Civil Work Planner")
gr.Markdown("Generate a project timeline (Gantt chart) and risk tags based on BOQ data and site parameters.")
with gr.Row():
with gr.Column():
boq_file = gr.File(label="Upload BOQ Data (CSV format)")
weather = gr.Dropdown(label="Weather", choices=["sunny", "rainy", "cloudy"], value="sunny")
workforce = gr.Number(label="Workforce Size", value=10, precision=0)
location = gr.Textbox(label="Location", placeholder="Enter project location")
project_title = gr.Textbox(label="Project Title", placeholder="Enter project title")
submit_btn = gr.Button("Generate Timeline")
with gr.Column():
output_image = gr.Image(label="Gantt Chart")
risk_tags = gr.Textbox(label="Risk Tags and Salesforce Status")
submit_btn.click(
fn=gradio_interface,
inputs=[boq_file, weather, workforce, location, project_title],
outputs=[output_image, risk_tags],
)
# Create a FastAPI app with CORS support
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["https://aiplannerforcivilworktimel2-dev-ed.develop.lightning.force.com"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Mount directory for temporary files (e.g., Gantt chart PNGs)
app.mount("/static", StaticFiles(directory=tempfile.gettempdir()), name="static")
# Health check endpoint to verify server status
@app.get("/health")
async def health_check():
return {"status": "healthy"}
# FastAPI endpoint for processing BOQ files and interacting with Salesforce
@app.post("/api/gradio_interface")
async def api_gradio_interface(
boq_file: UploadFile = File(...),
weather: str = Form(...),
workforce: int = Form(...),
location: str = Form(...),
project_title: str = Form(...)
):
temp_dir = None
try:
logger.info("Starting api_gradio_interface...")
temp_dir = tempfile.mkdtemp()
boq_file_path = os.path.join(temp_dir, boq_file.filename)
with open(boq_file_path, "wb") as f:
f.write(boq_file.file.read())
file_path, risk_tags, temp_dir = generate_project_timeline(boq_file_path, weather, workforce, location, project_title)
if not file_path:
return JSONResponse({"error": f"Failed to generate timeline: {risk_tags}"}, status_code=400)
df = pd.read_csv(boq_file_path)
estimated_duration = sum(df["Duration"])
ai_plan_score = min(100, max(0, 100 - (estimated_duration / 100)))
logger.debug(f"Estimated duration: {estimated_duration}, AI plan score: {ai_plan_score}")
record_id = send_to_salesforce(
project_title=project_title,
gantt_chart_url="",
ai_plan_score=ai_plan_score,
estimated_duration=estimated_duration,
status="Draft",
record_id=None,
location=location,
weather_type=weather
)
if not record_id:
return JSONResponse({
"error": f"Failed to create Salesforce record - check logs for details",
"text": f"Risk Tags:\n{risk_tags}"
}, status_code=500)
work_items_id = upload_file_to_salesforce(boq_file_path, "Boq_data.csv", record_id)
if not work_items_id:
logger.warning("Failed to upload BOQ file, but proceeding with record creation")
record_data = {
"project_title": project_title,
"estimated_duration": estimated_duration,
"ai_plan_score": ai_plan_score,
"status": "Draft",
"risk_tags": risk_tags,
}
pdf_file = generate_pdf(record_data)
if not pdf_file:
logger.warning("Failed to generate PDF, but proceeding with record creation")
pdf_content_id, pdf_url = None, None
if pdf_file:
pdf_content_id, pdf_url = upload_pdf_to_salesforce(pdf_file, project_title, record_id)
if not pdf_content_id:
logger.warning("Failed to upload PDF, but proceeding with record creation")
update_result = send_to_salesforce(
project_title=project_title,
gantt_chart_url=pdf_url if pdf_url else "",
ai_plan_score=ai_plan_score,
estimated_duration=estimated_duration,
status="Draft",
record_id=record_id,
location=location,
weather_type=weather,
work_items_id=work_items_id if work_items_id else ""
)
if not update_result:
logger.warning("Failed to update record with PDF URL, but record was created")
image_content_id = upload_file_to_salesforce(file_path, f"{project_title}_Gantt_Chart.png", record_id)
image_url = None
if image_content_id:
sf = get_salesforce_connection()
if sf:
image_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/version/download/{image_content_id}"
logger.debug(f"Generated image URL: {image_url}")
logger.info("API gradio interface completed successfully.")
return JSONResponse({
"image": image_url if image_url else f"/static/{os.path.basename(file_path)}",
"text": f"Successfully created Salesforce record ID: {record_id}\n\nRisk Tags:\n{risk_tags}"
})
except Exception as e:
logger.error(f"Error in API gradio interface: {str(e)}", exc_info=True)
return JSONResponse({"error": f"Error in API gradio interface: {str(e)}"}, status_code=500)
finally:
if temp_dir and os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
logger.debug(f"Cleaned up temporary directory: {temp_dir}")
if __name__ == "__main__":
# Run Gradio UI
demo.launch(server_name="0.0.0.0", server_port=7860) |