Update app.py
Browse files
app.py
CHANGED
@@ -3,14 +3,15 @@ import numpy as np
|
|
3 |
import pandas as pd
|
4 |
import plotly.express as px
|
5 |
import plotly.graph_objects as go
|
6 |
-
|
7 |
import gradio as gr
|
8 |
import os
|
9 |
from scipy.interpolate import interp1d
|
10 |
from scipy.optimize import curve_fit
|
11 |
|
12 |
-
# Load YOLOv5 model
|
13 |
-
|
|
|
14 |
|
15 |
# Cricket pitch dimensions (in meters)
|
16 |
PITCH_LENGTH = 20.12 # Length of cricket pitch (stumps to stumps)
|
@@ -18,6 +19,11 @@ PITCH_WIDTH = 3.05 # Width of pitch
|
|
18 |
STUMP_HEIGHT = 0.71 # Stump height
|
19 |
STUMP_WIDTH = 0.2286 # Stump width (including bails)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
# Function to process video and detect ball
|
22 |
def process_video(video_path):
|
23 |
cap = cv2.VideoCapture(video_path)
|
@@ -35,19 +41,30 @@ def process_video(video_path):
|
|
35 |
if not ret:
|
36 |
break
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
cap.release()
|
53 |
return positions, frame_numbers, bounce_point, frame_rate, frame_width, frame_height
|
@@ -72,15 +89,15 @@ def predict_trajectory(positions, frame_numbers, frame_width, frame_height):
|
|
72 |
except:
|
73 |
return None, "Failed to fit trajectory"
|
74 |
|
75 |
-
# Extrapolate to stumps
|
76 |
-
frame_max = max(frames) + 10
|
77 |
future_frames = np.linspace(min(frames), frame_max, 100)
|
78 |
x_pred = poly_func(future_frames, *popt_x)
|
79 |
y_pred = poly_func(future_frames, *popt_y)
|
80 |
|
81 |
# Check if trajectory hits stumps
|
82 |
-
stump_x = frame_width / 2
|
83 |
-
stump_y = frame_height
|
84 |
stump_hit = False
|
85 |
for x, y in zip(x_pred, y_pred):
|
86 |
if abs(y - stump_y) < 50 and abs(x - stump_x) < STUMP_WIDTH * frame_width / PITCH_WIDTH:
|
@@ -96,9 +113,8 @@ def map_pitch(bounce_point, frame_width, frame_height):
|
|
96 |
return None, "No bounce detected"
|
97 |
|
98 |
x, y = bounce_point
|
99 |
-
|
100 |
-
|
101 |
-
pitch_y = (1 - y / frame_height) * PITCH_LENGTH # Bottom of frame = 0
|
102 |
return pitch_x, pitch_y
|
103 |
|
104 |
# Estimate ball speed
|
@@ -106,7 +122,6 @@ def estimate_speed(positions, frame_numbers, frame_rate, frame_width):
|
|
106 |
if len(positions) < 2:
|
107 |
return None, "Insufficient detections for speed estimation"
|
108 |
|
109 |
-
# Calculate distance in pixels between consecutive detections
|
110 |
distances = []
|
111 |
for i in range(1, len(positions)):
|
112 |
x1, y1 = positions[i-1]
|
@@ -114,30 +129,24 @@ def estimate_speed(positions, frame_numbers, frame_rate, frame_width):
|
|
114 |
pixel_dist = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
|
115 |
distances.append(pixel_dist)
|
116 |
|
117 |
-
# Convert to meters (assume pitch length = frame height)
|
118 |
pixel_to_meter = PITCH_LENGTH / frame_width
|
119 |
distances_m = [d * pixel_to_meter for d in distances]
|
120 |
-
|
121 |
-
# Speed in m/s
|
122 |
time_interval = 1 / frame_rate
|
123 |
speeds = [d / time_interval for d in distances_m]
|
124 |
-
avg_speed_kmh = np.mean(speeds) * 3.6
|
125 |
return avg_speed_kmh, "Speed calculated successfully"
|
126 |
|
127 |
# Create pitch map visualization
|
128 |
def create_pitch_map(pitch_x, pitch_y):
|
129 |
fig = go.Figure()
|
130 |
-
# Draw pitch rectangle
|
131 |
fig.add_shape(
|
132 |
type="rect", x0=-PITCH_WIDTH/2, y0=0, x1=PITCH_WIDTH/2, y1=PITCH_LENGTH,
|
133 |
line=dict(color="Green"), fillcolor="Green", opacity=0.3
|
134 |
)
|
135 |
-
# Draw stumps
|
136 |
fig.add_shape(
|
137 |
type="rect", x0=-STUMP_WIDTH/2, y0=PITCH_LENGTH-0.1, x1=STUMP_WIDTH/2, y1=PITCH_LENGTH,
|
138 |
line=dict(color="Brown"), fillcolor="Brown"
|
139 |
)
|
140 |
-
# Plot bounce point
|
141 |
if pitch_x is not None and pitch_y is not None:
|
142 |
fig.add_trace(go.Scatter(x=[pitch_x], y=[pitch_y], mode="markers", marker=dict(size=10, color="Red"), name="Bounce Point"))
|
143 |
|
@@ -149,36 +158,27 @@ def create_pitch_map(pitch_x, pitch_y):
|
|
149 |
|
150 |
# Main Gradio function
|
151 |
def drs_analysis(video):
|
152 |
-
# Save uploaded video temporarily
|
153 |
video_path = "temp_video.mp4"
|
154 |
with open(video_path, "wb") as f:
|
155 |
f.write(video.read())
|
156 |
|
157 |
-
# Process video
|
158 |
positions, frame_numbers, bounce_point, frame_rate, frame_width, frame_height = process_video(video_path)
|
159 |
if not positions:
|
160 |
return None, None, "No ball detected in video", None
|
161 |
|
162 |
-
# Predict trajectory
|
163 |
trajectory, lbw_decision = predict_trajectory(positions, frame_numbers, frame_width, frame_height)
|
164 |
if trajectory is None:
|
165 |
return None, None, lbw_decision, None
|
166 |
|
167 |
-
# Map pitch
|
168 |
pitch_x, pitch_y = map_pitch(bounce_point, frame_width, frame_height)
|
169 |
-
|
170 |
-
# Estimate speed
|
171 |
speed_kmh, speed_status = estimate_speed(positions, frame_numbers, frame_rate, frame_width)
|
172 |
|
173 |
-
# Create trajectory plot
|
174 |
trajectory_df = pd.DataFrame(trajectory, columns=["Frame", "X", "Y"])
|
175 |
fig_traj = px.line(trajectory_df, x="X", y="Y", title="Ball Trajectory (Pixel Coordinates)")
|
176 |
-
fig_traj.update_yaxes(autorange="reversed")
|
177 |
|
178 |
-
# Create pitch map
|
179 |
fig_pitch = create_pitch_map(pitch_x, pitch_y)
|
180 |
|
181 |
-
# Clean up
|
182 |
os.remove(video_path)
|
183 |
|
184 |
return fig_traj, fig_pitch, f"LBW Decision: {lbw_decision}\nSpeed: {speed_kmh:.2f} km/h", video_path
|
|
|
3 |
import pandas as pd
|
4 |
import plotly.express as px
|
5 |
import plotly.graph_objects as go
|
6 |
+
import torch
|
7 |
import gradio as gr
|
8 |
import os
|
9 |
from scipy.interpolate import interp1d
|
10 |
from scipy.optimize import curve_fit
|
11 |
|
12 |
+
# Load YOLOv5 model from yolov5 repository
|
13 |
+
from yolov5.models.experimental import attempt_load
|
14 |
+
from yolov5.utils.general import non_max_suppression, xywh2xyxy
|
15 |
|
16 |
# Cricket pitch dimensions (in meters)
|
17 |
PITCH_LENGTH = 20.12 # Length of cricket pitch (stumps to stumps)
|
|
|
19 |
STUMP_HEIGHT = 0.71 # Stump height
|
20 |
STUMP_WIDTH = 0.2286 # Stump width (including bails)
|
21 |
|
22 |
+
# Load model
|
23 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
+
model = attempt_load("best.pt", map_location=device)
|
25 |
+
model.eval()
|
26 |
+
|
27 |
# Function to process video and detect ball
|
28 |
def process_video(video_path):
|
29 |
cap = cv2.VideoCapture(video_path)
|
|
|
41 |
if not ret:
|
42 |
break
|
43 |
|
44 |
+
# Preprocess frame for YOLOv5
|
45 |
+
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
46 |
+
img = torch.from_numpy(img).to(device).float() / 255.0
|
47 |
+
img = img.permute(2, 0, 1).unsqueeze(0) # [1, 3, H, W]
|
48 |
+
|
49 |
+
# Run inference
|
50 |
+
with torch.no_grad():
|
51 |
+
pred = model(img)[0]
|
52 |
+
pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45)
|
53 |
+
|
54 |
+
# Process detections
|
55 |
+
for det in pred:
|
56 |
+
if det is not None and len(det):
|
57 |
+
det = xywh2xyxy(det) # Convert to [x1, y1, x2, y2]
|
58 |
+
for *xyxy, conf, cls in det:
|
59 |
+
x_center = (xyxy[0] + xyxy[2]) / 2
|
60 |
+
y_center = (xyxy[1] + xyxy[3]) / 2
|
61 |
+
positions.append((x_center.item(), y_center.item()))
|
62 |
+
frame_numbers.append(frame_num)
|
63 |
+
|
64 |
+
# Detect bounce (lowest y_center point)
|
65 |
+
if bounce_frame is None or y_center > positions[bounce_frame][1]:
|
66 |
+
bounce_frame = len(frame_numbers) - 1
|
67 |
+
bounce_point = (x_center.item(), y_center.item())
|
68 |
|
69 |
cap.release()
|
70 |
return positions, frame_numbers, bounce_point, frame_rate, frame_width, frame_height
|
|
|
89 |
except:
|
90 |
return None, "Failed to fit trajectory"
|
91 |
|
92 |
+
# Extrapolate to stumps
|
93 |
+
frame_max = max(frames) + 10
|
94 |
future_frames = np.linspace(min(frames), frame_max, 100)
|
95 |
x_pred = poly_func(future_frames, *popt_x)
|
96 |
y_pred = poly_func(future_frames, *popt_y)
|
97 |
|
98 |
# Check if trajectory hits stumps
|
99 |
+
stump_x = frame_width / 2
|
100 |
+
stump_y = frame_height
|
101 |
stump_hit = False
|
102 |
for x, y in zip(x_pred, y_pred):
|
103 |
if abs(y - stump_y) < 50 and abs(x - stump_x) < STUMP_WIDTH * frame_width / PITCH_WIDTH:
|
|
|
113 |
return None, "No bounce detected"
|
114 |
|
115 |
x, y = bounce_point
|
116 |
+
pitch_x = (x / frame_width) * PITCH_WIDTH - PITCH_WIDTH / 2
|
117 |
+
pitch_y = (1 - y / frame_height) * PITCH_LENGTH
|
|
|
118 |
return pitch_x, pitch_y
|
119 |
|
120 |
# Estimate ball speed
|
|
|
122 |
if len(positions) < 2:
|
123 |
return None, "Insufficient detections for speed estimation"
|
124 |
|
|
|
125 |
distances = []
|
126 |
for i in range(1, len(positions)):
|
127 |
x1, y1 = positions[i-1]
|
|
|
129 |
pixel_dist = np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
|
130 |
distances.append(pixel_dist)
|
131 |
|
|
|
132 |
pixel_to_meter = PITCH_LENGTH / frame_width
|
133 |
distances_m = [d * pixel_to_meter for d in distances]
|
|
|
|
|
134 |
time_interval = 1 / frame_rate
|
135 |
speeds = [d / time_interval for d in distances_m]
|
136 |
+
avg_speed_kmh = np.mean(speeds) * 3.6
|
137 |
return avg_speed_kmh, "Speed calculated successfully"
|
138 |
|
139 |
# Create pitch map visualization
|
140 |
def create_pitch_map(pitch_x, pitch_y):
|
141 |
fig = go.Figure()
|
|
|
142 |
fig.add_shape(
|
143 |
type="rect", x0=-PITCH_WIDTH/2, y0=0, x1=PITCH_WIDTH/2, y1=PITCH_LENGTH,
|
144 |
line=dict(color="Green"), fillcolor="Green", opacity=0.3
|
145 |
)
|
|
|
146 |
fig.add_shape(
|
147 |
type="rect", x0=-STUMP_WIDTH/2, y0=PITCH_LENGTH-0.1, x1=STUMP_WIDTH/2, y1=PITCH_LENGTH,
|
148 |
line=dict(color="Brown"), fillcolor="Brown"
|
149 |
)
|
|
|
150 |
if pitch_x is not None and pitch_y is not None:
|
151 |
fig.add_trace(go.Scatter(x=[pitch_x], y=[pitch_y], mode="markers", marker=dict(size=10, color="Red"), name="Bounce Point"))
|
152 |
|
|
|
158 |
|
159 |
# Main Gradio function
|
160 |
def drs_analysis(video):
|
|
|
161 |
video_path = "temp_video.mp4"
|
162 |
with open(video_path, "wb") as f:
|
163 |
f.write(video.read())
|
164 |
|
|
|
165 |
positions, frame_numbers, bounce_point, frame_rate, frame_width, frame_height = process_video(video_path)
|
166 |
if not positions:
|
167 |
return None, None, "No ball detected in video", None
|
168 |
|
|
|
169 |
trajectory, lbw_decision = predict_trajectory(positions, frame_numbers, frame_width, frame_height)
|
170 |
if trajectory is None:
|
171 |
return None, None, lbw_decision, None
|
172 |
|
|
|
173 |
pitch_x, pitch_y = map_pitch(bounce_point, frame_width, frame_height)
|
|
|
|
|
174 |
speed_kmh, speed_status = estimate_speed(positions, frame_numbers, frame_rate, frame_width)
|
175 |
|
|
|
176 |
trajectory_df = pd.DataFrame(trajectory, columns=["Frame", "X", "Y"])
|
177 |
fig_traj = px.line(trajectory_df, x="X", y="Y", title="Ball Trajectory (Pixel Coordinates)")
|
178 |
+
fig_traj.update_yaxes(autorange="reversed")
|
179 |
|
|
|
180 |
fig_pitch = create_pitch_map(pitch_x, pitch_y)
|
181 |
|
|
|
182 |
os.remove(video_path)
|
183 |
|
184 |
return fig_traj, fig_pitch, f"LBW Decision: {lbw_decision}\nSpeed: {speed_kmh:.2f} km/h", video_path
|