Update app.py
Browse files
app.py
CHANGED
@@ -10,39 +10,54 @@ import os
|
|
10 |
# Load the trained YOLOv8n model from the Space's root directory
|
11 |
model = YOLO("best.pt") # Assumes best.pt is in the same directory as app.py
|
12 |
|
13 |
-
# Constants for LBW decision
|
14 |
STUMPS_WIDTH = 0.2286 # meters (width of stumps)
|
15 |
BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
|
16 |
-
FRAME_RATE = 30 #
|
|
|
|
|
17 |
|
18 |
def process_video(video_path):
|
19 |
# Initialize video capture
|
|
|
|
|
20 |
cap = cv2.VideoCapture(video_path)
|
21 |
frames = []
|
22 |
ball_positions = []
|
|
|
23 |
|
|
|
24 |
while cap.isOpened():
|
25 |
ret, frame = cap.read()
|
26 |
if not ret:
|
27 |
break
|
|
|
28 |
frames.append(frame.copy()) # Store original frame
|
29 |
# Detect ball using the trained YOLOv8n model
|
30 |
-
results = model.predict(frame, conf=
|
|
|
31 |
for detection in results[0].boxes:
|
32 |
if detection.cls == 0: # Assuming class 0 is the ball
|
|
|
33 |
x1, y1, x2, y2 = detection.xyxy[0].cpu().numpy()
|
34 |
ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
|
35 |
# Draw bounding box on frame for visualization
|
36 |
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
|
37 |
frames[-1] = frame # Update frame with bounding box
|
|
|
38 |
cap.release()
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
def estimate_trajectory(ball_positions, frames):
|
43 |
# Simplified physics-based trajectory projection
|
44 |
if len(ball_positions) < 2:
|
45 |
-
return None, None
|
46 |
# Extract x, y coordinates
|
47 |
x_coords = [pos[0] for pos in ball_positions]
|
48 |
y_coords = [pos[1] for pos in ball_positions]
|
@@ -52,20 +67,22 @@ def estimate_trajectory(ball_positions, frames):
|
|
52 |
try:
|
53 |
fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate")
|
54 |
fy = interp1d(times, y_coords, kind='quadratic', fill_value="extrapolate")
|
55 |
-
except:
|
56 |
-
return None, None
|
57 |
|
58 |
# Project trajectory forward (0.5 seconds post-impact)
|
59 |
t_future = np.linspace(times[-1], times[-1] + 0.5, 10)
|
60 |
x_future = fx(t_future)
|
61 |
y_future = fy(t_future)
|
62 |
|
63 |
-
return list(zip(x_future, y_future)), t_future
|
64 |
|
65 |
def lbw_decision(ball_positions, trajectory, frames):
|
66 |
# Simplified LBW logic
|
|
|
|
|
67 |
if not trajectory or len(ball_positions) < 2:
|
68 |
-
return "Not enough data", None
|
69 |
|
70 |
# Assume stumps are at the bottom center of the frame (calibration needed)
|
71 |
frame_height, frame_width = frames[0].shape[:2]
|
@@ -90,43 +107,47 @@ def lbw_decision(ball_positions, trajectory, frames):
|
|
90 |
return "Not Out (Missing stumps)", trajectory
|
91 |
|
92 |
def generate_slow_motion(frames, trajectory, output_path):
|
93 |
-
# Generate slow-motion video with ball detection and trajectory overlay
|
|
|
|
|
94 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
95 |
-
out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE /
|
96 |
|
97 |
for frame in frames:
|
98 |
if trajectory:
|
99 |
for x, y in trajectory:
|
100 |
cv2.circle(frame, (int(x), int(y)), 5, (255, 0, 0), -1) # Blue dots for trajectory
|
101 |
-
|
102 |
-
|
103 |
out.release()
|
104 |
return output_path
|
105 |
|
106 |
def drs_review(video):
|
107 |
# Process video and generate DRS output
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
trajectory, _ = estimate_trajectory(ball_positions, frames)
|
112 |
decision, trajectory = lbw_decision(ball_positions, trajectory, frames)
|
113 |
|
114 |
-
# Generate slow-motion replay
|
115 |
output_path = f"output_{uuid.uuid4()}.mp4"
|
116 |
slow_motion_path = generate_slow_motion(frames, trajectory, output_path)
|
117 |
|
118 |
-
|
|
|
|
|
119 |
|
120 |
# Gradio interface
|
121 |
iface = gr.Interface(
|
122 |
fn=drs_review,
|
123 |
inputs=gr.Video(label="Upload Video Clip"),
|
124 |
outputs=[
|
125 |
-
gr.Textbox(label="DRS Decision"),
|
126 |
-
gr.Video(label="Slow-Motion Replay with Ball Detection and Trajectory")
|
127 |
],
|
128 |
title="AI-Powered DRS for LBW in Local Cricket",
|
129 |
-
description="Upload a video clip of a cricket delivery to get an LBW decision and slow-motion replay showing ball detection and trajectory."
|
130 |
)
|
131 |
|
132 |
if __name__ == "__main__":
|
|
|
10 |
# Load the trained YOLOv8n model from the Space's root directory
|
11 |
model = YOLO("best.pt") # Assumes best.pt is in the same directory as app.py
|
12 |
|
13 |
+
# Constants for LBW decision and video processing
|
14 |
STUMPS_WIDTH = 0.2286 # meters (width of stumps)
|
15 |
BALL_DIAMETER = 0.073 # meters (approx. cricket ball diameter)
|
16 |
+
FRAME_RATE = 30 # Input video frame rate
|
17 |
+
SLOW_MOTION_FACTOR = 6 # For very slow motion (6x slower)
|
18 |
+
CONF_THRESHOLD = 0.3 # Lowered confidence threshold for better detection
|
19 |
|
20 |
def process_video(video_path):
|
21 |
# Initialize video capture
|
22 |
+
if not os.path.exists(video_path):
|
23 |
+
return [], [], "Error: Video file not found"
|
24 |
cap = cv2.VideoCapture(video_path)
|
25 |
frames = []
|
26 |
ball_positions = []
|
27 |
+
debug_log = []
|
28 |
|
29 |
+
frame_count = 0
|
30 |
while cap.isOpened():
|
31 |
ret, frame = cap.read()
|
32 |
if not ret:
|
33 |
break
|
34 |
+
frame_count += 1
|
35 |
frames.append(frame.copy()) # Store original frame
|
36 |
# Detect ball using the trained YOLOv8n model
|
37 |
+
results = model.predict(frame, conf=CONF_THRESHOLD)
|
38 |
+
detections = 0
|
39 |
for detection in results[0].boxes:
|
40 |
if detection.cls == 0: # Assuming class 0 is the ball
|
41 |
+
detections += 1
|
42 |
x1, y1, x2, y2 = detection.xyxy[0].cpu().numpy()
|
43 |
ball_positions.append([(x1 + x2) / 2, (y1 + y2) / 2])
|
44 |
# Draw bounding box on frame for visualization
|
45 |
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
|
46 |
frames[-1] = frame # Update frame with bounding box
|
47 |
+
debug_log.append(f"Frame {frame_count}: {detections} ball detections")
|
48 |
cap.release()
|
49 |
|
50 |
+
if not ball_positions:
|
51 |
+
debug_log.append("No balls detected in any frame")
|
52 |
+
else:
|
53 |
+
debug_log.append(f"Total ball detections: {len(ball_positions)}")
|
54 |
+
|
55 |
+
return frames, ball_positions, "\n".join(debug_log)
|
56 |
|
57 |
def estimate_trajectory(ball_positions, frames):
|
58 |
# Simplified physics-based trajectory projection
|
59 |
if len(ball_positions) < 2:
|
60 |
+
return None, None, "Error: Fewer than 2 ball detections for trajectory"
|
61 |
# Extract x, y coordinates
|
62 |
x_coords = [pos[0] for pos in ball_positions]
|
63 |
y_coords = [pos[1] for pos in ball_positions]
|
|
|
67 |
try:
|
68 |
fx = interp1d(times, x_coords, kind='linear', fill_value="extrapolate")
|
69 |
fy = interp1d(times, y_coords, kind='quadratic', fill_value="extrapolate")
|
70 |
+
except Exception as e:
|
71 |
+
return None, None, f"Error in trajectory interpolation: {str(e)}"
|
72 |
|
73 |
# Project trajectory forward (0.5 seconds post-impact)
|
74 |
t_future = np.linspace(times[-1], times[-1] + 0.5, 10)
|
75 |
x_future = fx(t_future)
|
76 |
y_future = fy(t_future)
|
77 |
|
78 |
+
return list(zip(x_future, y_future)), t_future, "Trajectory estimated successfully"
|
79 |
|
80 |
def lbw_decision(ball_positions, trajectory, frames):
|
81 |
# Simplified LBW logic
|
82 |
+
if not frames:
|
83 |
+
return "Error: No frames processed", None
|
84 |
if not trajectory or len(ball_positions) < 2:
|
85 |
+
return "Not enough data (insufficient ball detections)", None
|
86 |
|
87 |
# Assume stumps are at the bottom center of the frame (calibration needed)
|
88 |
frame_height, frame_width = frames[0].shape[:2]
|
|
|
107 |
return "Not Out (Missing stumps)", trajectory
|
108 |
|
109 |
def generate_slow_motion(frames, trajectory, output_path):
|
110 |
+
# Generate very slow-motion video with ball detection and trajectory overlay
|
111 |
+
if not frames:
|
112 |
+
return None
|
113 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
114 |
+
out = cv2.VideoWriter(output_path, fourcc, FRAME_RATE / SLOW_MOTION_FACTOR, (frames[0].shape[1], frames[0].shape[0]))
|
115 |
|
116 |
for frame in frames:
|
117 |
if trajectory:
|
118 |
for x, y in trajectory:
|
119 |
cv2.circle(frame, (int(x), int(y)), 5, (255, 0, 0), -1) # Blue dots for trajectory
|
120 |
+
for _ in range(SLOW_MOTION_FACTOR): # Duplicate frames for very slow motion
|
121 |
+
out.write(frame)
|
122 |
out.release()
|
123 |
return output_path
|
124 |
|
125 |
def drs_review(video):
|
126 |
# Process video and generate DRS output
|
127 |
+
frames, ball_positions, debug_log = process_video(video)
|
128 |
+
if not frames:
|
129 |
+
return f"Error: Failed to process video\nDebug Log:\n{debug_log}", None
|
130 |
+
trajectory, _, trajectory_log = estimate_trajectory(ball_positions, frames)
|
131 |
decision, trajectory = lbw_decision(ball_positions, trajectory, frames)
|
132 |
|
133 |
+
# Generate slow-motion replay even if Trajectory fails
|
134 |
output_path = f"output_{uuid.uuid4()}.mp4"
|
135 |
slow_motion_path = generate_slow_motion(frames, trajectory, output_path)
|
136 |
|
137 |
+
# Combine debug logs for output
|
138 |
+
debug_output = f"{debug_log}\n{trajectory_log}"
|
139 |
+
return f"DRS Decision: {decision}\nDebug Log:\n{debug_output}", slow_motion_path
|
140 |
|
141 |
# Gradio interface
|
142 |
iface = gr.Interface(
|
143 |
fn=drs_review,
|
144 |
inputs=gr.Video(label="Upload Video Clip"),
|
145 |
outputs=[
|
146 |
+
gr.Textbox(label="DRS Decision and Debug Log"),
|
147 |
+
gr.Video(label="Very Slow-Motion Replay with Ball Detection and Trajectory")
|
148 |
],
|
149 |
title="AI-Powered DRS for LBW in Local Cricket",
|
150 |
+
description="Upload a video clip of a cricket delivery to get an LBW decision and very slow-motion replay showing ball detection (green boxes) and trajectory (blue dots)."
|
151 |
)
|
152 |
|
153 |
if __name__ == "__main__":
|