Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ import plotly.graph_objects as go
|
|
6 |
import torch
|
7 |
import gradio as gr
|
8 |
import os
|
|
|
9 |
from scipy.optimize import curve_fit
|
10 |
import sys
|
11 |
|
@@ -24,6 +25,9 @@ STUMP_WIDTH = 0.2286 # Stump width (including bails)
|
|
24 |
|
25 |
# Model input size (adjust if best.pt was trained with a different size)
|
26 |
MODEL_INPUT_SIZE = (640, 640) # (height, width)
|
|
|
|
|
|
|
27 |
|
28 |
# Load model
|
29 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -40,45 +44,70 @@ def process_video(video_path):
|
|
40 |
frame_numbers = []
|
41 |
bounce_frame = None
|
42 |
bounce_point = None
|
|
|
|
|
|
|
43 |
|
|
|
44 |
while cap.isOpened():
|
45 |
frame_num = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
|
46 |
ret, frame = cap.read()
|
47 |
if not ret:
|
48 |
break
|
49 |
|
|
|
|
|
|
|
|
|
|
|
50 |
# Resize frame to model input size
|
51 |
frame = cv2.resize(frame, MODEL_INPUT_SIZE, interpolation=cv2.INTER_AREA)
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
cap.release()
|
|
|
82 |
return positions, frame_numbers, bounce_point, frame_rate, frame_width, frame_height
|
83 |
|
84 |
# Polynomial function for trajectory fitting
|
|
|
6 |
import torch
|
7 |
import gradio as gr
|
8 |
import os
|
9 |
+
import time
|
10 |
from scipy.optimize import curve_fit
|
11 |
import sys
|
12 |
|
|
|
25 |
|
26 |
# Model input size (adjust if best.pt was trained with a different size)
|
27 |
MODEL_INPUT_SIZE = (640, 640) # (height, width)
|
28 |
+
FRAME_SKIP = 2 # Process every 2nd frame
|
29 |
+
MIN_DETECTIONS = 10 # Stop after 10 detections
|
30 |
+
BATCH_SIZE = 4 # Process 4 frames at a time
|
31 |
|
32 |
# Load model
|
33 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
44 |
frame_numbers = []
|
45 |
bounce_frame = None
|
46 |
bounce_point = None
|
47 |
+
batch_frames = []
|
48 |
+
batch_frame_nums = []
|
49 |
+
frame_count = 0
|
50 |
|
51 |
+
start_time = time.time()
|
52 |
while cap.isOpened():
|
53 |
frame_num = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
|
54 |
ret, frame = cap.read()
|
55 |
if not ret:
|
56 |
break
|
57 |
|
58 |
+
# Skip frames
|
59 |
+
if frame_count % FRAME_SKIP != 0:
|
60 |
+
frame_count += 1
|
61 |
+
continue
|
62 |
+
|
63 |
# Resize frame to model input size
|
64 |
frame = cv2.resize(frame, MODEL_INPUT_SIZE, interpolation=cv2.INTER_AREA)
|
65 |
+
batch_frames.append(frame)
|
66 |
+
batch_frame_nums.append(frame_num)
|
67 |
+
frame_count += 1
|
68 |
+
|
69 |
+
# Process batch when full or at end
|
70 |
+
if len(batch_frames) == BATCH_SIZE or not ret:
|
71 |
+
# Preprocess batch
|
72 |
+
batch = [cv2.cvtColor(f, cv2.COLOR_BGR2RGB) for f in batch_frames]
|
73 |
+
batch = np.stack(batch) # [batch_size, H, W, 3]
|
74 |
+
batch = torch.from_numpy(batch).to(device).float() / 255.0
|
75 |
+
batch = batch.permute(0, 3, 1, 2) # [batch_size, 3, H, W]
|
76 |
+
|
77 |
+
# Run inference
|
78 |
+
frame_start_time = time.time()
|
79 |
+
with torch.no_grad():
|
80 |
+
pred = model(batch)[0]
|
81 |
+
pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45)
|
82 |
+
print(f"Batch inference time: {time.time() - frame_start_time:.2f}s for {len(batch_frames)} frames")
|
83 |
+
|
84 |
+
# Process detections
|
85 |
+
for i, det in enumerate(pred):
|
86 |
+
if det is not None and len(det):
|
87 |
+
det = xywh2xyxy(det) # Convert to [x1, y1, x2, y2]
|
88 |
+
for *xyxy, conf, cls in det:
|
89 |
+
x_center = (xyxy[0] + xyxy[2]) / 2
|
90 |
+
y_center = (xyxy[1] + xyxy[3]) / 2
|
91 |
+
# Scale coordinates back to original frame size
|
92 |
+
x_center = x_center * frame_width / MODEL_INPUT_SIZE[1]
|
93 |
+
y_center = y_center * frame_height / MODEL_INPUT_SIZE[0]
|
94 |
+
positions.append((x_center.item(), y_center.item()))
|
95 |
+
frame_numbers.append(batch_frame_nums[i])
|
96 |
+
|
97 |
+
# Detect bounce (lowest y_center point)
|
98 |
+
if bounce_frame is None or y_center > positions[bounce_frame][1]:
|
99 |
+
bounce_frame = len(frame_numbers) - 1
|
100 |
+
bounce_point = (x_center.item(), y_center.item())
|
101 |
+
|
102 |
+
batch_frames = []
|
103 |
+
batch_frame_nums = []
|
104 |
+
|
105 |
+
# Early termination
|
106 |
+
if len(positions) >= MIN_DETECTIONS:
|
107 |
+
break
|
108 |
|
109 |
cap.release()
|
110 |
+
print(f"Total video processing time: {time.time() - start_time:.2f}s")
|
111 |
return positions, frame_numbers, bounce_point, frame_rate, frame_width, frame_height
|
112 |
|
113 |
# Polynomial function for trajectory fitting
|