Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,24 @@
|
|
1 |
import cv2
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
|
|
4 |
from sklearn.linear_model import LinearRegression
|
5 |
import tempfile
|
6 |
|
7 |
def process_video(video_path):
|
8 |
cap = cv2.VideoCapture(video_path)
|
9 |
-
|
10 |
-
|
11 |
|
12 |
out_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
|
13 |
-
out = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*"mp4v"), 20.0, (
|
14 |
|
15 |
-
|
|
|
16 |
ball_color_upper = np.array([20, 255, 255])
|
|
|
17 |
trajectory = []
|
|
|
18 |
|
19 |
while True:
|
20 |
ret, frame = cap.read()
|
@@ -37,51 +41,64 @@ def process_video(video_path):
|
|
37 |
trajectory.append(center)
|
38 |
cv2.circle(frame, center, int(radius), (0, 0, 255), 2)
|
39 |
|
40 |
-
# Draw
|
41 |
-
stump_box = (frame_w // 2 - 30, frame_h - 120, frame_w // 2 + 30, frame_h - 50)
|
42 |
-
cv2.rectangle(frame, stump_box[:2], stump_box[2:], (0, 255, 255), 2)
|
43 |
-
|
44 |
-
# Draw trajectory
|
45 |
for i in range(1, len(trajectory)):
|
46 |
cv2.line(frame, trajectory[i - 1], trajectory[i], (255, 0, 0), 2)
|
47 |
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
X = np.array([x for x, y in trajectory]).reshape(-1, 1)
|
59 |
-
y = np.array([y for x, y in trajectory])
|
60 |
|
61 |
-
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
stump_x = frame_w // 2
|
66 |
-
pred_y = int(model.predict(np.array([[stump_x]]))[0])
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
decision = "OUT"
|
|
|
72 |
|
73 |
-
#
|
74 |
-
final_frame = cv2.
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
return out_path
|
78 |
|
79 |
iface = gr.Interface(
|
80 |
fn=process_video,
|
81 |
-
inputs=gr.Video(label="Upload Bowling Video
|
82 |
-
outputs=gr.Video(label="
|
83 |
-
title="
|
84 |
-
description="
|
85 |
)
|
86 |
|
87 |
iface.launch()
|
|
|
1 |
import cv2
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
+
from sklearn.preprocessing import PolynomialFeatures
|
5 |
from sklearn.linear_model import LinearRegression
|
6 |
import tempfile
|
7 |
|
8 |
def process_video(video_path):
|
9 |
cap = cv2.VideoCapture(video_path)
|
10 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
11 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
12 |
|
13 |
out_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
|
14 |
+
out = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*"mp4v"), 20.0, (width, height))
|
15 |
|
16 |
+
# Color range for ball (adjust if needed)
|
17 |
+
ball_color_lower = np.array([5, 100, 100])
|
18 |
ball_color_upper = np.array([20, 255, 255])
|
19 |
+
|
20 |
trajectory = []
|
21 |
+
predicted_points = []
|
22 |
|
23 |
while True:
|
24 |
ret, frame = cap.read()
|
|
|
41 |
trajectory.append(center)
|
42 |
cv2.circle(frame, center, int(radius), (0, 0, 255), 2)
|
43 |
|
44 |
+
# Draw trajectory line
|
|
|
|
|
|
|
|
|
45 |
for i in range(1, len(trajectory)):
|
46 |
cv2.line(frame, trajectory[i - 1], trajectory[i], (255, 0, 0), 2)
|
47 |
|
48 |
+
# Draw stumps box
|
49 |
+
stump_box = (width // 2 - 30, height - 120, width // 2 + 30, height - 50)
|
50 |
+
cv2.rectangle(frame, stump_box[:2], stump_box[2:], (0, 255, 255), 2)
|
51 |
|
52 |
+
# Draw projected path if enough points collected
|
53 |
+
if len(trajectory) >= 5 and not predicted_points:
|
54 |
+
X = np.array([x for x, y in trajectory]).reshape(-1, 1)
|
55 |
+
Y = np.array([y for x, y in trajectory])
|
56 |
|
57 |
+
poly = PolynomialFeatures(degree=2)
|
58 |
+
X_poly = poly.fit_transform(X)
|
59 |
|
60 |
+
model = LinearRegression()
|
61 |
+
model.fit(X_poly, Y)
|
|
|
|
|
62 |
|
63 |
+
x_future = np.linspace(min(X)[0], max(X)[0] + 150, num=20).reshape(-1, 1)
|
64 |
+
y_future = model.predict(poly.transform(x_future))
|
65 |
|
66 |
+
predicted_points = list(zip(x_future.flatten().astype(int), y_future.astype(int)))
|
|
|
|
|
67 |
|
68 |
+
# Draw projected path (dotted yellow)
|
69 |
+
for pt in predicted_points:
|
70 |
+
if 0 <= pt[0] < width and 0 <= pt[1] < height:
|
71 |
+
cv2.circle(frame, pt, 3, (0, 255, 255), -1)
|
72 |
+
|
73 |
+
out.write(frame)
|
74 |
+
|
75 |
+
cap.release()
|
76 |
+
out.release()
|
77 |
+
|
78 |
+
# Determine OUT/NOT OUT
|
79 |
+
decision = "NOT OUT"
|
80 |
+
for x, y in predicted_points:
|
81 |
+
if stump_box[0] <= x <= stump_box[2] and stump_box[1] <= y <= stump_box[3]:
|
82 |
decision = "OUT"
|
83 |
+
break
|
84 |
|
85 |
+
# Final frame update
|
86 |
+
final_frame = cv2.VideoCapture(out_path)
|
87 |
+
ret, last_frame = final_frame.read()
|
88 |
+
if ret:
|
89 |
+
cv2.putText(last_frame, f"DECISION: {decision}", (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255) if decision == "OUT" else (0, 255, 0), 4)
|
90 |
+
out_final = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc(*"mp4v"), 20.0, (width, height))
|
91 |
+
out_final.write(last_frame)
|
92 |
+
out_final.release()
|
93 |
|
94 |
return out_path
|
95 |
|
96 |
iface = gr.Interface(
|
97 |
fn=process_video,
|
98 |
+
inputs=gr.Video(label="Upload Bowling Video"),
|
99 |
+
outputs=gr.Video(label="LBW Tracker Output"),
|
100 |
+
title="DRS LBW Review System",
|
101 |
+
description="Detect ball trajectory, project path, and decide OUT/NOT OUT using AI"
|
102 |
)
|
103 |
|
104 |
iface.launch()
|