import gradio as gr import cv2 import numpy as np import tempfile import os def detect_and_predict(video): # Save uploaded video temp_video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name with open(temp_video_path, "wb") as f: f.write(video.read()) cap = cv2.VideoCapture(temp_video_path) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) fourcc = cv2.VideoWriter_fourcc(*'mp4v') out_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name out = cv2.VideoWriter(out_path, fourcc, 20.0, (width, height)) ball_color_lower = np.array([5, 50, 50]) # Orange/red lower ball_color_upper = np.array([15, 255, 255]) # Orange/red upper trajectory_points = [] while True: ret, frame = cap.read() if not ret: break blurred = cv2.GaussianBlur(frame, (11, 11), 0) hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv, ball_color_lower, ball_color_upper) mask = cv2.erode(mask, None, iterations=2) mask = cv2.dilate(mask, None, iterations=2) contours, _ = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours: c = max(contours, key=cv2.contourArea) ((x, y), radius) = cv2.minEnclosingCircle(c) if radius > 3: trajectory_points.append((int(x), int(y))) cv2.circle(frame, (int(x), int(y)), int(radius), (0, 0, 255), 2) # Draw trajectory for i in range(1, len(trajectory_points)): cv2.line(frame, trajectory_points[i - 1], trajectory_points[i], (255, 0, 0), 2) # Draw stumps line (for simplicity, fixed zone) cv2.rectangle(frame, (width // 2 - 20, height - 200), (width // 2 + 20, height - 50), (0, 255, 255), 2) out.write(frame) cap.release() out.release() return out_path iface = gr.Interface(fn=detect_and_predict, inputs=gr.Video(label="Upload Bowling Video"), outputs=gr.Video(label="Ball Tracking Result"), title="DRS Ball Tracker", description="Detect and visualize ball trajectory for LBW simulation.") iface.launch()