File size: 4,506 Bytes
49e447c
 
 
70802d0
49e447c
70802d0
49e447c
 
 
70802d0
 
 
 
 
 
 
49e447c
 
70802d0
 
 
 
49e447c
 
 
 
 
 
 
 
70802d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49e447c
 
 
70802d0
 
49e447c
 
 
 
 
 
 
70802d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49e447c
 
 
 
 
 
 
70802d0
 
 
49e447c
 
 
 
 
 
 
 
 
 
f6a6373
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from flask import Flask, render_template, request, jsonify
import numpy as np
from sklearn.linear_model import LogisticRegression
import cv2
import os
from werkzeug.utils import secure_filename

app = Flask(__name__)

# Configure upload folder
UPLOAD_FOLDER = 'uploads'
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
ALLOWED_EXTENSIONS = {'mp4', 'avi', 'mov'}

# Dummy ML model for LBW decision
def train_dummy_model():
    X = np.array([
        [0.5, 0.0, 0.4, 0.5, 30, 0],  # Not Out
        [0.5, 0.5, 0.5, 0.5, 35, 2],  # Out
        [0.6, 0.2, 0.5, 0.6, 32, 1],  # Not Out
        [0.5, 0.4, 0.5, 0.4, 34, 0],  # Out
    ])
    y = np.array([0, 1, 0, 1])
    model = LogisticRegression()
    model.fit(X, y)
    return model

model = train_dummy_model()

# Check allowed file extensions
def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

# Process video to extract ball trajectory
def process_video(video_path):
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        return None, None, "Failed to open video"

    # Lists to store trajectory points
    actual_path = []
    frame_count = 0
    total_speed = 0
    spin = 0  # Simplified: Assume no spin for now

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        # Convert to HSV and detect ball (assuming a red ball)
        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        mask = cv2.inRange(hsv, (0, 120, 70), (10, 255, 255))
        contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        if contours:
            c = max(contours, key=cv2.contourArea)
            x, y, w, h = cv2.boundingRect(c)
            center_x = x + w / 2
            center_y = y + h / 2

            # Normalize coordinates to 0-1 (assuming 1280x720 video resolution)
            norm_x = center_x / 1280
            norm_y = center_y / 720
            actual_path.append({"x": norm_x, "y": norm_y})

        frame_count += 1
        if frame_count > 30:  # Process first 30 frames for simplicity
            break

    cap.release()

    if not actual_path:
        return None, None, "No ball detected in video"

    # Assume last point is impact, calculate pitching as midpoint
    pitching_x = actual_path[len(actual_path)//2]["x"]
    pitching_y = actual_path[len(actual_path)//2]["y"]
    impact_x = actual_path[-1]["x"]
    impact_y = actual_path[-1]["y"]

    # Simulate speed (frames per second to m/s, rough estimate)
    fps = cap.get(cv2.CAP_PROP_FPS) or 30
    speed = (len(actual_path) / (frame_count / fps)) * 0.5  # Simplified conversion

    # Projected path (linear from impact to stumps, adjusted for spin)
    projected_path = [
        {"x": impact_x, "y": impact_y},
        {"x": impact_x + spin * 0.1, "y": 1.0}  # Stumps at y=1.0
    ]

    return actual_path, projected_path, pitching_x, pitching_y, impact_x, impact_y, speed, spin

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/analyze', methods=['POST'])
def analyze():
    if 'video' not in request.files:
        return jsonify({'error': 'No video uploaded'}), 400

    file = request.files['video']
    if file.filename == '' or not allowed_file(file.filename):
        return jsonify({'error': 'Invalid file'}), 400

    # Save the uploaded video
    filename = secure_filename(file.filename)
    video_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
    file.save(video_path)

    # Process video
    actual_path, projected_path, pitching_x, pitching_y, impact_x, impact_y, speed, spin = process_video(video_path)
    if actual_path is None:
        return jsonify({'error': projected_path}), 400  # projected_path holds error message here

    # Predict LBW decision
    features = np.array([[pitching_x, pitching_y, impact_x, impact_y, speed, spin]])
    prediction = model.predict(features)[0]
    confidence = model.predict_proba(features)[0][prediction]
    decision = "Out" if prediction == 1 else "Not Out"

    # Clean up
    os.remove(video_path)

    return jsonify({
        'actual_path': actual_path,
        'projected_path': projected_path,
        'decision': decision,
        'confidence': round(confidence, 2),
        'pitching': {'x': pitching_x, 'y': pitching_y},
        'impact': {'x': impact_x, 'y': impact_y}
    })

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860, debug=True)