Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import xgboost as xgb
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
import json
|
6 |
+
import requests
|
7 |
+
|
8 |
+
# Load pre-trained model
|
9 |
+
model = pickle.load(open("lapse_model.pkl", "rb"))
|
10 |
+
|
11 |
+
# Salesforce (Optional)
|
12 |
+
SALESFORCE_ENDPOINT = "https://orgfarm-ac78ff910d-dev-ed.develop.lightning.force.com/lightning/setup/SetupOneHome/home"
|
13 |
+
SALESFORCE_AUTH_TOKEN = "AmmfRcd6IiYaRtSGntBnzNMQU"
|
14 |
+
|
15 |
+
def predict_lapse(policy_id, last_premium_paid_date, payment_mode, policy_term, policy_age):
|
16 |
+
# Map payment_mode to numeric
|
17 |
+
payment_map = {"Annual": 0, "Semi-Annual": 1, "Quarterly": 2, "Monthly": 3}
|
18 |
+
payment_encoded = payment_map.get(payment_mode, 0)
|
19 |
+
|
20 |
+
# Feature vector
|
21 |
+
features = np.array([[policy_term, policy_age, payment_encoded]])
|
22 |
+
|
23 |
+
# Predict risk
|
24 |
+
risk_score = model.predict_proba(features)[0][1]
|
25 |
+
|
26 |
+
# Save to Salesforce (Optional)
|
27 |
+
try:
|
28 |
+
headers = {
|
29 |
+
"Authorization": SALESFORCE_AUTH_TOKEN,
|
30 |
+
"Content-Type": "application/json"
|
31 |
+
}
|
32 |
+
data = {
|
33 |
+
"Name": policy_id,
|
34 |
+
"Lapse_Risk_Score__c": risk_score,
|
35 |
+
"Last_Paid_Date__c": last_premium_paid_date,
|
36 |
+
"Premium_Payment_Mode__c": payment_mode,
|
37 |
+
"Policy_Term__c": policy_term,
|
38 |
+
"Policy_Age__c": policy_age
|
39 |
+
#"Communication_Score__c": communication_score
|
40 |
+
}
|
41 |
+
response = requests.post(SALESFORCE_ENDPOINT, json=data, headers=headers)
|
42 |
+
print("Salesforce Response:", response.status_code, response.text)
|
43 |
+
except Exception as e:
|
44 |
+
print("Salesforce Integration Error:", e)
|
45 |
+
|
46 |
+
return round(risk_score, 3)
|
47 |
+
|
48 |
+
# Gradio Interface
|
49 |
+
demo = gr.Interface(
|
50 |
+
fn=predict_lapse,
|
51 |
+
inputs=[
|
52 |
+
gr.Text(label="Policy ID"),
|
53 |
+
gr.Text(label="Last Premium Paid Date (YYYY-MM-DD)"),
|
54 |
+
gr.Dropdown(["Annual", "Semi-Annual", "Quarterly", "Monthly"], label="Payment Mode"),
|
55 |
+
gr.Number(label="Policy Term (Years)"),
|
56 |
+
gr.Number(label="Policy Age (Years)"),
|
57 |
+
gr.Slider(0, 1, label="Communication Score (0 to 1)") # a feature from comm. history analysis
|
58 |
+
],
|
59 |
+
outputs=gr.Number(label="Lapse Risk Score (0 - 1)"),
|
60 |
+
title="Lapse Risk Predictor",
|
61 |
+
description="Predict the likelihood of policy lapse using XGBoost model"
|
62 |
+
)
|
63 |
+
|
64 |
+
demo.launch()
|