File size: 10,694 Bytes
e81860f
 
0bc4e56
e81860f
bf0e73e
 
 
f1a77d0
 
194cf30
 
e81860f
 
 
 
 
 
54dcee8
 
 
 
0bc4e56
 
54dcee8
0bc4e56
 
e81860f
 
 
e0af381
194cf30
 
 
e0af381
0bc4e56
 
e0af381
 
 
0bc4e56
e0af381
 
 
 
 
 
 
 
0bc4e56
e0af381
f1a77d0
 
 
54dcee8
 
 
 
 
 
0bc4e56
54dcee8
f1a77d0
 
 
d0d1ab8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import streamlit as st
import torch
from transformers import DetrImageProcessor, DetrForObjectDetection
import cv2
import numpy as np
import tempfile
import os
import asyncio
from concurrent.futures import ThreadPoolExecutor
import warnings
from transformers.utils import logging

# Set page configuration
st.set_page_config(page_title="Solar Panel Fault Detection", layout="wide")

# Title and description
st.title("Solar Panel Fault Detection PoC")
st.write("Upload a thermal video (MP4) to detect thermal, dust, and power generation faults.")

# UI controls for optimization parameters
st.sidebar.header("Analysis Settings")
frame_skip = st.sidebar.slider("Frame Skip (higher = faster, less thorough)", min_value=1, max_value=50, value=30)
batch_size = st.sidebar.slider("Batch Size (adjust for hardware)", min_value=1, max_value=32, value=16 if torch.cuda.is_available() else 8)
resize_enabled = st.sidebar.checkbox("Resize Frames (faster processing)", value=True)
resize_width = 512 if resize_enabled else None
quantize_model = st.sidebar.checkbox("Quantize Model (faster, esp. on CPU)", value=True)

# Load model and processor
@st.cache_resource
def load_model(quantize=quantize_model):
    warnings.filterwarnings("ignore", message="Some weights of the model checkpoint.*were not used")
    logging.set_verbosity_error()
    
    try:
        processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
        model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model.to(device)
        
        # Apply dynamic quantization if enabled
        if quantize and device.type == "cpu":
            model = torch.quantization.quantize_dynamic(
                model, {torch.nn.Linear}, dtype=torch.qint8
            )
        
        model.eval()
        return processor, model, device
    except Exception as e:
        st.error(f"Failed to load model: {str(e)}. Check internet connection or cache (~/.cache/huggingface/hub).")
        raise

processor, model, device = load_model()

# Function to resize frame
def resize_frame(frame, width=None):
    if width is None:
        return frame
    aspect_ratio = frame.shape[1] / frame.shape[0]
    height = int(width / aspect_ratio)
    return cv2.resize(frame, (width, height), interpolation=cv2.INTER_LINEAR)

# Function to process a batch of frames
async def detect_faults_batch(frames, processor, model, device):
    try:
        frames = [resize_frame(frame, resize_width) for frame in frames]
        inputs = processor(images=frames, return_tensors="pt").to(device)
        with torch.no_grad():
            outputs = model(**inputs)
        target_sizes = torch.tensor([frame.shape[:2] for frame in frames]).to(device)
        results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)
        
        annotated_frames = []
        all_faults = []
        
        for frame, result in zip(frames, results):
            faults = {"Thermal Fault": False, "Dust Fault": False, "Power Generation Fault": False}
            annotated_frame = frame.copy()
            
            for score, label, box in zip(result["scores"], result["labels"], result["boxes"]):
                box = [int(i) for i in box.tolist()]
                roi = frame[box[1]:box[3], box[0]:box[2]]
                mean_intensity = np.mean(roi)
                
                if mean_intensity > 200:
                    faults["Thermal Fault"] = True
                    cv2.rectangle(annotated_frame, (box[0], box[1]), (box[2], box[3]), (255, 0, 0), 2)
                    cv2.putText(annotated_frame, "Thermal Fault", (box[0], box[1]-10), 
                               cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
                elif mean_intensity < 100:
                    faults["Dust Fault"] = True
                    cv2.rectangle(annotated_frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
                    cv2.putText(annotated_frame, "Dust Fault", (box[0], box[1]-10), 
                               cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
                
                if faults["Thermal Fault"] or faults["Dust Fault"]:
                    faults["Power Generation Fault"] = True
            
            annotated_frames.append(annotated_frame)
            all_faults.append(faults)
        
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        
        return annotated_frames, all_faults
    except Exception as e:
        st.error(f"Error during fault detection: {str(e)}")
        return [], []

# Function to process video
async def process_video(video_path, frame_skip, batch_size):
    try:
        cap = cv2.VideoCapture(video_path)
        if not cap.isOpened():
            st.error("Error: Could not open video file.")
            return None, None
        
        frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(cap.get(cv2.CAP_PROP_FPS))
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        
        out_width = resize_width if resize_width else frame_width
        out_height = int(out_width * frame_height / frame_width) if resize_width else frame_height
        
        output_path = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
        fourcc = cv2.VideoWriter_fourcc(*"mp4v")
        out = cv2.VideoWriter(output_path, fourcc, fps, (out_width, out_height))
        
        video_faults = {"Thermal Fault": False, "Dust Fault": False, "Power Generation Fault": False}
        frame_count = 0
        frames_batch = []
        processed_frames = 0
        
        with st.spinner("Analyzing video..."):
            progress = st.progress(0)
            executor = ThreadPoolExecutor(max_workers=2)
            
            while cap.isOpened():
                ret, frame = cap.read()
                if not ret:
                    break
                
                if frame_count % frame_skip != 0:
                    frame = resize_frame(frame, resize_width)
                    out.write(frame)
                    frame_count += 1
                    processed_frames += 1
                    progress.progress(min(processed_frames / total_frames, 1.0))
                    continue
                
                frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                frames_batch.append(frame_rgb)
                
                if len(frames_batch) >= batch_size:
                    annotated_frames, batch_faults = await detect_faults_batch(frames_batch, processor, model, device)
                    for annotated_frame, faults in zip(annotated_frames, batch_faults):
                        for fault in video_faults:
                            video_faults[fault] |= faults[fault]
                        annotated_frame_bgr = cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR)
                        out.write(annotated_frame_bgr)
                    
                    frames_batch = []
                    processed_frames += batch_size
                    progress.progress(min(processed_frames / total_frames, 1.0))
                
                frame_count += 1
            
            if frames_batch:
                annotated_frames, batch_faults = await detect_faults_batch(frames_batch, processor, model, device)
                for annotated_frame, faults in zip(annotated_frames, batch_faults):
                    for fault in video_faults:
                        video_faults[fault] |= faults[fault]
                    annotated_frame_bgr = cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR)
                    out.write(annotated_frame_bgr)
                
                processed_frames += len(frames_batch)
                progress.progress(min(processed_frames / total_frames, 1.0))
        
        cap.release()
        out.release()
        return output_path, video_faults
    
    except Exception as e:
        st.error(f"Error processing video: {str(e)}")
        return None, None
    finally:
        if 'cap' in locals() and cap.isOpened():
            cap.release()
        if 'out' in locals():
            out.release()

# File uploader
uploaded_file = st.file_uploader("Upload a thermal video", type=["mp4"])

if uploaded_file is not None:
    try:
        tfile = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
        tfile.write(uploaded_file.read())
        tfile.close()
        
        st.video(tfile.name, format="video/mp4")
        
        # Create a new event loop for Streamlit's ScriptRunner thread
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        try:
            output_path, video_faults = loop.run_until_complete(process_video(tfile.name, frame_skip, batch_size))
        finally:
            loop.close()
        
        if output_path and video_faults:
            st.subheader("Fault Detection Results")
            st.video(output_path, format="video/mp4")
            
            st.write("**Detected Faults in Video:**")
            for fault, detected in video_faults.items():
                status = "Detected" if detected else "Not Detected"
                color = "red" if detected else "green"
                st.markdown(f"- **{fault}**: <span style='color:{color}'>{status}</span>", unsafe_allow_html=True)
            
            if any(video_faults.values()):
                st.subheader("Recommendations")
                if video_faults["Thermal Fault"]:
                    st.write("- **Thermal Fault**: Inspect for damaged components or overheating issues.")
                if video_faults["Dust Fault"]:
                    st.write("- **Dust Fault**: Schedule cleaning to remove dust accumulation.")
                if video_faults["Power Generation Fault"]:
                    st.write("- **Power Generation Fault**: Investigate efficiency issues due to detected faults.")
            else:
                st.write("No faults detected. The solar panel appears to be functioning normally.")
            
            if os.path.exists(output_path):
                os.unlink(output_path)
        
        if os.path.exists(tfile.name):
            os.unlink(tfile.name)
    
    except Exception as e:
        st.error(f"Error handling uploaded file: {str(e)}")
    finally:
        if 'tfile' in locals() and os.path.exists(tfile.name):
            os.unlink(tfile.name)

# Footer
st.markdown("---")
st.write("Built with Streamlit, Hugging Face Transformers, and OpenCV for Solar Panel Fault Detection PoC")