Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +110 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,112 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
# Set page configuration
|
9 |
+
st.set_page_config(page_title="Solar Panel Fault Detection", layout="wide")
|
10 |
+
|
11 |
+
# Title and description
|
12 |
+
st.title("Solar Panel Fault Detection PoC")
|
13 |
+
st.write("Upload a thermal image of a solar panel to detect thermal, dust, and power generation faults.")
|
14 |
+
|
15 |
+
# Load model and processor
|
16 |
+
@st.cache_resource
|
17 |
+
def load_model():
|
18 |
+
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
19 |
+
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
20 |
+
return processor, model
|
21 |
+
|
22 |
+
processor, model = load_model()
|
23 |
+
|
24 |
+
# Function to process image and detect faults
|
25 |
+
def detect_faults(image):
|
26 |
+
# Convert PIL image to numpy array
|
27 |
+
img_np = np.array(image)
|
28 |
+
|
29 |
+
# Convert to RGB if necessary
|
30 |
+
if img_np.shape[-1] == 4:
|
31 |
+
img_np = img_np[:, :, :3]
|
32 |
+
|
33 |
+
# Prepare image for model
|
34 |
+
inputs = processor(images=img_np, return_tensors="pt")
|
35 |
+
|
36 |
+
# Run inference
|
37 |
+
with torch.no_grad():
|
38 |
+
outputs = model(**inputs)
|
39 |
+
|
40 |
+
# Post-process outputs
|
41 |
+
target_sizes = torch.tensor([img_np.shape[:2]])
|
42 |
+
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
43 |
+
|
44 |
+
# Initialize fault detection
|
45 |
+
faults = {"Thermal Fault": False, "Dust Fault": False, "Power Generation Fault": False}
|
46 |
+
annotated_img = img_np.copy()
|
47 |
+
|
48 |
+
# Analyze thermal image for faults
|
49 |
+
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
50 |
+
box = [int(i) for i in box.tolist()]
|
51 |
+
# Simulate fault detection based on bounding box and pixel intensity
|
52 |
+
roi = img_np[box[1]:box[3], box[0]:box[2]]
|
53 |
+
mean_intensity = np.mean(roi)
|
54 |
+
|
55 |
+
# Thermal Fault: High intensity (hotspot)
|
56 |
+
if mean_intensity > 200: # Adjust threshold based on thermal image scale
|
57 |
+
faults["Thermal Fault"] = True
|
58 |
+
cv2.rectangle(annotated_img, (box[0], box[1]), (box[2], box[3]), (255, 0, 0), 2)
|
59 |
+
cv2.putText(annotated_img, "Thermal Fault", (box[0], box[1]-10),
|
60 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
|
61 |
+
|
62 |
+
# Dust Fault: Low intensity or irregular patterns
|
63 |
+
elif mean_intensity < 100: # Adjust threshold
|
64 |
+
faults["Dust Fault"] = True
|
65 |
+
cv2.rectangle(annotated_img, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
|
66 |
+
cv2.putText(annotated_img, "Dust Fault", (box[0], box[1]-10),
|
67 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
68 |
+
|
69 |
+
# Power Generation Fault: Any detected anomaly may indicate reduced efficiency
|
70 |
+
if faults["Thermal Fault"] or faults["Dust Fault"]:
|
71 |
+
faults["Power Generation Fault"] = True
|
72 |
+
|
73 |
+
return annotated_img, faults
|
74 |
+
|
75 |
+
# File uploader
|
76 |
+
uploaded_file = st.file_uploader("Upload a thermal image", type=["png", "jpg", "jpeg"])
|
77 |
+
|
78 |
+
if uploaded_file is not None:
|
79 |
+
# Load and display uploaded image
|
80 |
+
image = Image.open(uploaded_file).convert("RGB")
|
81 |
+
st.image(image, caption="Uploaded Thermal Image", use_column_width=True)
|
82 |
+
|
83 |
+
# Process image
|
84 |
+
with st.spinner("Analyzing image..."):
|
85 |
+
annotated_img, faults = detect_faults(image)
|
86 |
+
|
87 |
+
# Display results
|
88 |
+
st.subheader("Fault Detection Results")
|
89 |
+
st.image(annotated_img, caption="Annotated Image with Detected Faults", use_column_width=True)
|
90 |
+
|
91 |
+
# Show fault summary
|
92 |
+
st.write("**Detected Faults:**")
|
93 |
+
for fault, detected in faults.items():
|
94 |
+
status = "Detected" if detected else "Not Detected"
|
95 |
+
color = "red" if detected else "green"
|
96 |
+
st.markdown(f"- **{fault}**: <span style='color:{color}'>{status}</span>", unsafe_allow_html=True)
|
97 |
+
|
98 |
+
# Provide recommendations
|
99 |
+
if any(faults.values()):
|
100 |
+
st.subheader("Recommendations")
|
101 |
+
if faults["Thermal Fault"]:
|
102 |
+
st.write("- **Thermal Fault**: Inspect for damaged components or overheating issues.")
|
103 |
+
if faults["Dust Fault"]:
|
104 |
+
st.write("- **Dust Fault**: Schedule cleaning to remove dust accumulation.")
|
105 |
+
if faults["Power Generation Fault"]:
|
106 |
+
st.write("- **Power Generation Fault**: Investigate efficiency issues due to detected faults.")
|
107 |
+
else:
|
108 |
+
st.write("No faults detected. The solar panel appears to be functioning normally.")
|
109 |
|
110 |
+
# Footer
|
111 |
+
st.markdown("---")
|
112 |
+
st.write("Built with Streamlit and Hugging Face Transformers for Solar Panel Fault Detection PoC")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|