Spaces:
Running
Running
Update lbw_detector.py
Browse files- lbw_detector.py +27 -78
lbw_detector.py
CHANGED
@@ -1,79 +1,28 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
import numpy as np
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
def
|
22 |
-
"""
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
"impact_frame": int,
|
30 |
-
"impact_type": str,
|
31 |
-
"objects_per_frame": [
|
32 |
-
{"ball": (x, y), "pad": (x, y), ...}
|
33 |
-
]
|
34 |
-
}
|
35 |
-
"""
|
36 |
-
ball_positions = []
|
37 |
-
impact_frame = -1
|
38 |
-
impact_type = None
|
39 |
-
objects_per_frame = []
|
40 |
-
|
41 |
-
for idx, frame in enumerate(frames):
|
42 |
-
results = model(frame)[0]
|
43 |
-
frame_objects = {}
|
44 |
-
|
45 |
-
for det in results.boxes.data:
|
46 |
-
x1, y1, x2, y2, conf, cls = det.cpu().numpy()
|
47 |
-
class_id = int(cls)
|
48 |
-
class_name = CLASS_NAMES.get(class_id, "unknown")
|
49 |
-
center_x = int((x1 + x2) / 2)
|
50 |
-
center_y = int((y1 + y2) / 2)
|
51 |
-
frame_objects[class_name] = (center_x, center_y)
|
52 |
-
|
53 |
-
if class_name == "ball":
|
54 |
-
ball_positions.append((idx, center_x, center_y))
|
55 |
-
|
56 |
-
objects_per_frame.append(frame_objects)
|
57 |
-
|
58 |
-
# Basic impact logic: ball overlaps pad or bat
|
59 |
-
if "ball" in frame_objects and ("pad" in frame_objects or "bat" in frame_objects):
|
60 |
-
bx, by = frame_objects["ball"]
|
61 |
-
if "pad" in frame_objects:
|
62 |
-
px, py = frame_objects["pad"]
|
63 |
-
if abs(bx - px) < 30 and abs(by - py) < 30:
|
64 |
-
impact_frame = idx
|
65 |
-
impact_type = "pad"
|
66 |
-
break
|
67 |
-
if "bat" in frame_objects:
|
68 |
-
tx, ty = frame_objects["bat"]
|
69 |
-
if abs(bx - tx) < 30 and abs(by - ty) < 30:
|
70 |
-
impact_frame = idx
|
71 |
-
impact_type = "bat"
|
72 |
-
break
|
73 |
-
|
74 |
-
return {
|
75 |
-
"ball_positions": ball_positions,
|
76 |
-
"impact_frame": impact_frame,
|
77 |
-
"impact_type": impact_type,
|
78 |
-
"objects_per_frame": objects_per_frame
|
79 |
-
}
|
|
|
1 |
+
# lbw_detector.py
|
2 |
+
import torch
|
3 |
import numpy as np
|
4 |
+
from torchvision import transforms
|
5 |
+
import cv2
|
6 |
+
from utils import extract_frames
|
7 |
+
from trajectory_predictor import predict_trajectory
|
8 |
+
from visualizer import draw_visuals
|
9 |
+
|
10 |
+
# Load the custom LBW model
|
11 |
+
model_path = "models/lbw_drs_unet_model.pth"
|
12 |
+
device = "cpu" # Hugging Face Free Tier
|
13 |
+
|
14 |
+
model = torch.load(model_path, map_location=device)
|
15 |
+
model.eval()
|
16 |
+
|
17 |
+
transform = transforms.Compose([
|
18 |
+
transforms.ToTensor(),
|
19 |
+
])
|
20 |
+
|
21 |
+
def detect_objects_with_model(frame):
|
22 |
+
"""Run segmentation on a frame using the custom model"""
|
23 |
+
input_tensor = transform(frame).unsqueeze(0).to(device)
|
24 |
+
with torch.no_grad():
|
25 |
+
output = model(input_tensor)
|
26 |
+
# Convert output to mask
|
27 |
+
mask = torch.sigmoid(output).squeeze().cpu().numpy()
|
28 |
+
return mask # Assumed to be binary mask (ball/pad/stump segmentation)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|