File size: 2,966 Bytes
885b434
 
eaeabb1
885b434
5a63293
cb34ab7
 
5a63293
 
885b434
4c9facd
0da98ac
 
 
 
 
 
 
 
 
 
4c9facd
 
885b434
eaeabb1
 
78ae48c
b9bec37
885b434
1dd5bbf
eaeabb1
 
1dd5bbf
eaeabb1
1af1aed
eaeabb1
1dd5bbf
eaeabb1
82c6a1e
f0e5035
82c6a1e
1dd5bbf
 
78ae48c
82c6a1e
78ae48c
1dd5bbf
78ae48c
9a2fed2
7fee8c9
 
 
 
 
 
15a27ae
0da98ac
7fee8c9
 
 
 
 
 
 
 
15a27ae
7fee8c9
 
 
 
 
78ae48c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
import csv

MODEL_URL = "https://huggingface.co/dsfsi/PuoBERTa-News"
WEBSITE_URL = "https://www.kodiks.com/ai_solutions.html"

tokenizer = AutoTokenizer.from_pretrained("dsfsi/PuoBERTa-News")
model = AutoModelForSequenceClassification.from_pretrained("dsfsi/PuoBERTa-News")

categories = {
    "arts_culture_entertainment_and_media": "Botsweretshi, setso, boitapoloso le bobegakgang",
    "crime_law_and_justice": "Bosenyi, molao le bosiamisi",
    "disaster_accident_and_emergency_incident": "Masetlapelo, kotsi le tiragalo ya maemo a tshoganyetso",
    "economy_business_and_finance": "Ikonomi, tsa kgwebo le tsa ditšhelete",
    "education": "Thuto",
    "environment": "Tikologo",
    "health": "Boitekanelo",
    "politics": "Dipolotiki",
    "religion_and_belief": "Bodumedi le tumelo",
    "society": "Setšhaba"
}

def prediction(news):
    classifier = pipeline("text-classification", tokenizer=tokenizer, model=model, return_all_scores=True)
    preds = classifier(news)
    preds_dict = {categories.get(pred['label'], pred['label']): round(pred['score'], 4) for pred in preds[0]}
    return preds_dict

def file_prediction(file):
    news_list = []

    if file.name.endswith('.csv'):
        file.seek(0)
        reader = csv.reader(file.read().decode('utf-8').splitlines())
        news_list = [row[0] for row in reader if row]
    else:
        file.seek(0)
        file_content = file.read().decode('utf-8')
        news_list = file_content.splitlines()

    results = []
    for news in news_list:
        if news.strip(): 
            pred = prediction(news)
            results.append([news, pred])

    return results

gradio_ui = gr.Interface(
    fn=prediction,
    title="Setswana News Classification",
    description=f"Enter Setswana news article to see the category of the news.\n For this classification, the {MODEL_URL} model was used.",
    inputs=gr.Textbox(lines=10, label="Paste some Setswana news here"),
    outputs=gr.Label(num_top_classes=5, label="News categories probabilities"),
    theme="default",
    article="<p style='text-align: center'>For our other AI works: <a href='https://www.kodiks.com/ai_solutions.html' target='_blank'>https://www.kodiks.com/ai_solutions.html</a> | <a href='https://twitter.com/KodiksBilisim' target='_blank'>Contact us</a></p>",
)

gradio_file_ui = gr.Interface(
    fn=file_prediction,
    title="Upload File for Setswana News Classification",
    description=f"Upload a text or CSV file with Setswana news articles. The first column in the CSV should contain the news text.",
    inputs=gr.File(label="Upload text or CSV file"),
    outputs=gr.Dataframe(headers=["News Text", "Category Predictions"], label="Predictions from file"),
    theme="default" 
)

gradio_combined_ui = gr.TabbedInterface([gradio_ui, gradio_file_ui], ["Text Input", "File Upload"])

gradio_combined_ui.launch()