Spaces:
Runtime error
Runtime error
kargaranamir
commited on
Commit
·
e94a434
1
Parent(s):
4ab4a60
upload.
Browse files- README.md +6 -5
- app.py +183 -0
- assets/GlotLID_logo.svg +0 -0
- constants.py +4 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title: GlotLID
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.27.2
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: GlotLID
|
3 |
+
emoji: ☕
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.27.2
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
tags: [multilingual]
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The GlotLID Authors.
|
3 |
+
# Lint as: python3
|
4 |
+
"""
|
5 |
+
GlotLID Space
|
6 |
+
"""
|
7 |
+
|
8 |
+
""" This space is built based on AMR-KELEG/ALDi space """
|
9 |
+
|
10 |
+
|
11 |
+
import constants
|
12 |
+
import pandas as pd
|
13 |
+
import streamlit as st
|
14 |
+
from huggingface_hub import hf_hub_download
|
15 |
+
from GlotScript import get_script_predictor
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
import fasttext
|
18 |
+
import altair as alt
|
19 |
+
from altair import X, Y, Scale
|
20 |
+
import base64
|
21 |
+
|
22 |
+
|
23 |
+
@st.cache_resource
|
24 |
+
def load_sp():
|
25 |
+
sp = get_script_predictor()
|
26 |
+
return sp
|
27 |
+
|
28 |
+
|
29 |
+
sp = load_sp()
|
30 |
+
|
31 |
+
def get_script(text):
|
32 |
+
"""Get the writing system of given text.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
text: The text to be preprocessed.
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
The writing system of text.
|
39 |
+
"""
|
40 |
+
|
41 |
+
return sp(text)[0]
|
42 |
+
|
43 |
+
@st.cache_data
|
44 |
+
def render_svg(svg):
|
45 |
+
"""Renders the given svg string."""
|
46 |
+
b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
|
47 |
+
html = rf'<p align="center"> <img src="data:image/svg+xml;base64,{b64}"/> </p>'
|
48 |
+
c = st.container()
|
49 |
+
c.write(html, unsafe_allow_html=True)
|
50 |
+
|
51 |
+
|
52 |
+
@st.cache_data
|
53 |
+
def convert_df(df):
|
54 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
55 |
+
return df.to_csv(index=None).encode("utf-8")
|
56 |
+
|
57 |
+
|
58 |
+
@st.cache_resource
|
59 |
+
def load_model(model_name):
|
60 |
+
model_path = hf_hub_download(repo_id=model_name, filename="model.bin")
|
61 |
+
model = fasttext.load_model(model_path)
|
62 |
+
return model
|
63 |
+
|
64 |
+
|
65 |
+
model = load_model(constants.MODEL_NAME)
|
66 |
+
|
67 |
+
|
68 |
+
def compute(sentences):
|
69 |
+
"""Computes the language labels for the given sentences.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
sentences: A list of sentences.
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
A list of language probablities and labels for the given sentences.
|
76 |
+
"""
|
77 |
+
progress_text = "Computing Language..."
|
78 |
+
my_bar = st.progress(0, text=progress_text)
|
79 |
+
|
80 |
+
BATCH_SIZE = 1
|
81 |
+
probs = []
|
82 |
+
labels = []
|
83 |
+
preprocessed_sentences = sentences
|
84 |
+
|
85 |
+
for first_index in range(0, len(preprocessed_sentences), BATCH_SIZE):
|
86 |
+
|
87 |
+
outputs = model.predict(preprocessed_sentences[first_index : first_index + BATCH_SIZE])
|
88 |
+
|
89 |
+
# BATCH_SIZE = 1
|
90 |
+
outputs_labels = outputs[0][0]
|
91 |
+
outputs_probs = outputs[1][0]
|
92 |
+
|
93 |
+
probs = probs + [max(min(o, 1), 0) for o in outputs_probs]
|
94 |
+
labels = labels + outputs_labels
|
95 |
+
|
96 |
+
my_bar.progress(
|
97 |
+
min((first_index + BATCH_SIZE) / len(preprocessed_sentences), 1),
|
98 |
+
text=progress_text,
|
99 |
+
)
|
100 |
+
my_bar.empty()
|
101 |
+
return probs, labels
|
102 |
+
|
103 |
+
|
104 |
+
render_svg(open("assets/GlotLID_logo.svg").read())
|
105 |
+
|
106 |
+
tab1, tab2 = st.tabs(["Input a Sentence", "Upload a File"])
|
107 |
+
|
108 |
+
with tab1:
|
109 |
+
sent = st.text_input(
|
110 |
+
"Sentence:", placeholder="Enter a sentence.", on_change=None
|
111 |
+
)
|
112 |
+
|
113 |
+
# TODO: Check if this is needed!
|
114 |
+
clicked = st.button("Submit")
|
115 |
+
|
116 |
+
if sent:
|
117 |
+
probs, labels = compute([sent])
|
118 |
+
prob = probs[0]
|
119 |
+
label = labels[0]
|
120 |
+
|
121 |
+
ORANGE_COLOR = "#FF8000"
|
122 |
+
fig, ax = plt.subplots(figsize=(8, 1))
|
123 |
+
fig.patch.set_facecolor("none")
|
124 |
+
ax.set_facecolor("none")
|
125 |
+
|
126 |
+
ax.spines["left"].set_color(ORANGE_COLOR)
|
127 |
+
ax.spines["bottom"].set_color(ORANGE_COLOR)
|
128 |
+
ax.tick_params(axis="x", colors=ORANGE_COLOR)
|
129 |
+
|
130 |
+
ax.spines[["right", "top"]].set_visible(False)
|
131 |
+
|
132 |
+
ax.barh(y=[0], width=[prob], color=ORANGE_COLOR)
|
133 |
+
ax.set_xlim(0, 1)
|
134 |
+
ax.set_ylim(-1, 1)
|
135 |
+
ax.set_title(f"Langauge is: {label}", color=ORANGE_COLOR)
|
136 |
+
ax.get_yaxis().set_visible(False)
|
137 |
+
ax.set_xlabel("Confidence", color=ORANGE_COLOR)
|
138 |
+
st.pyplot(fig)
|
139 |
+
|
140 |
+
print(sent)
|
141 |
+
with open("logs.txt", "a") as f:
|
142 |
+
f.write(sent + "\n")
|
143 |
+
|
144 |
+
with tab2:
|
145 |
+
file = st.file_uploader("Upload a file", type=["txt"])
|
146 |
+
if file is not None:
|
147 |
+
df = pd.read_csv(file, sep="\t", header=None)
|
148 |
+
df.columns = ["Sentence"]
|
149 |
+
df.reset_index(drop=True, inplace=True)
|
150 |
+
|
151 |
+
# TODO: Run the model
|
152 |
+
df['Probs'], df["Language"] = compute(df["Sentence"].tolist())
|
153 |
+
|
154 |
+
# A horizontal rule
|
155 |
+
st.markdown("""---""")
|
156 |
+
|
157 |
+
chart = (
|
158 |
+
alt.Chart(df.reset_index())
|
159 |
+
.mark_area(color="darkorange", opacity=0.5)
|
160 |
+
.encode(
|
161 |
+
x=X(field="index", title="Sentence Index"),
|
162 |
+
y=Y("Probs", scale=Scale(domain=[0, 1])),
|
163 |
+
)
|
164 |
+
)
|
165 |
+
st.altair_chart(chart.interactive(), use_container_width=True)
|
166 |
+
|
167 |
+
col1, col2 = st.columns([4, 1])
|
168 |
+
|
169 |
+
with col1:
|
170 |
+
# Display the output
|
171 |
+
st.table(
|
172 |
+
df,
|
173 |
+
)
|
174 |
+
|
175 |
+
with col2:
|
176 |
+
# Add a download button
|
177 |
+
csv = convert_df(df)
|
178 |
+
st.download_button(
|
179 |
+
label=":file_folder: Download predictions as CSV",
|
180 |
+
data=csv,
|
181 |
+
file_name="GlotLID.csv",
|
182 |
+
mime="text/csv",
|
183 |
+
)
|
assets/GlotLID_logo.svg
ADDED
constants.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CHOICE_TEXT = "Input Text"
|
2 |
+
CHOICE_FILE = "Upload File"
|
3 |
+
TITLE = "GlotLID: Language Identification for Around 2000 Languages"
|
4 |
+
MODEL_NAME = "cis-lmu/GlotLID"
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
fasttext
|
2 |
+
huggingface_hub
|
3 |
+
GlotScript
|