import gradio as gr from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration, pipeline model_name = "dsfsi/nr-en-m2m100-gov" tokenizer = M2M100Tokenizer.from_pretrained(model_name) model = M2M100ForConditionalGeneration.from_pretrained(model_name) tokenizer.src_lang = "nr" model.config.forced_bos_token_id = tokenizer.get_lang_id("en") translater_nr_en = pipeline( "translation", model=model, tokenizer=tokenizer, ) def translate(inp): res = translater_nr_en(inp, max_length=512, early_stopping=True)[0]['translation_text'] return res # Update description and article as needed description = """

One-way Translation from isiNdebele to English

""" article = "

by dsfsi

" examples = [ ["Ngiyabonga kakhulu ngesipho osinike sona."], ["Ukuthula kuhlale kuyindlela ephilayo yempilo yethu."] ] iface = gr.Interface( fn=translate, title="isiNdebele to English Translation", description=description, article=article, examples=examples, inputs=gr.components.Textbox(lines=5, placeholder="Enter isiNdebele text (maximum 5 lines)", label="Input"), outputs="text" ) iface.launch(enable_queue=True)