import gradio as gr from transformers import pipeline, M2M100Tokenizer model_name = "dsfsi/nr-en-m2m100-gov" tokenizer = M2M100Tokenizer.from_pretrained(model_name) print(tokenizer.lang_code_to_token) translater_nr_en = pipeline("translation", model=model_name, src_lang="nr", tgt_lang="en") def translate(inp): # Translate from isiNdebele to English res = translater_nr_en(inp, max_length=512, early_stopping=True)[0]['translation_text'] return res description = """

One-way Translation from isiNdebele to English

""" article = "

by dsfsi

" examples = [ ["Ngiyabonga kakhulu ngesipho osinike sona."], ["Ukuthula kuhlale kuyindlela ephilayo yempilo yethu."] ] iface = gr.Interface( fn=translate, title="isiNdebele to English Translation", description=description, article=article, examples=examples, inputs=gr.components.Textbox(lines=5, placeholder="Enter isiNdebele text (maximum 5 lines)", label="Input"), outputs="text" ) iface.launch(enable_queue=True)