import gradio as gr
from transformers import pipeline, M2M100Tokenizer
model_name = "dsfsi/nr-en-m2m100-gov"
tokenizer = M2M100Tokenizer.from_pretrained(model_name)
print(tokenizer.lang_code_to_token)
translater_nr_en = pipeline("translation", model=model_name, src_lang="nr", tgt_lang="en")
def translate(inp):
# Translate from isiNdebele to English
res = translater_nr_en(inp, max_length=512, early_stopping=True)[0]['translation_text']
return res
description = """
One-way Translation from isiNdebele to English
"""
article = "by dsfsi
"
examples = [
["Ngiyabonga kakhulu ngesipho osinike sona."],
["Ukuthula kuhlale kuyindlela ephilayo yempilo yethu."]
]
iface = gr.Interface(
fn=translate,
title="isiNdebele to English Translation",
description=description,
article=article,
examples=examples,
inputs=gr.components.Textbox(lines=5, placeholder="Enter isiNdebele text (maximum 5 lines)", label="Input"),
outputs="text"
)
iface.launch(enable_queue=True)