File size: 4,600 Bytes
557f1c4
929aad9
 
 
 
 
 
 
c879843
929aad9
 
 
 
 
2a76b54
 
929aad9
 
2a76b54
929aad9
 
 
 
 
 
 
2a76b54
 
557f1c4
 
 
 
 
929aad9
 
 
 
 
 
 
 
 
 
 
2a76b54
929aad9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a76b54
 
c879843
 
 
 
 
 
 
929aad9
a3fc4ad
2a76b54
929aad9
 
 
 
 
 
 
 
 
 
 
 
 
f581b9c
929aad9
f581b9c
a8c3afa
 
 
 
 
 
 
 
929aad9
 
 
 
2a76b54
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import random
import torch
import torchaudio
from einops import rearrange
import gradio as gr
import spaces
import os
import uuid
from pydub import AudioSegment

# Importing the model-related functions
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond

global model, model_config

# Load the model outside of the GPU-decorated function
def load_model():
    global model, model_config
    print("Loading model...")
    model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
    print("Model loaded successfully.")
    return model, model_config

# Function to set up, generate, and process the audio
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
    global model, model_config

    seed = random.randint(0, 2**63 - 1)
    random.seed(seed)
    torch.manual_seed(seed)
    print(f"Using seed: {seed}")

    print(f"Prompt received: {prompt}")
    print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")

    device = "cuda" if torch.cuda.is_available() else "cpu"
    print(f"Using device: {device}")

    # Fetch the Hugging Face token from the environment variable
    hf_token = os.getenv('HF_TOKEN')
    print(f"Hugging Face token: {hf_token}")

    # Use pre-loaded model and configuration
    #model, model_config = load_model()
    sample_rate = model_config["sample_rate"]
    sample_size = model_config["sample_size"]

    print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")

    model = model.to(device)
    print("Model moved to device.")

    # Set up text and timing conditioning
    conditioning = [{
        "prompt": prompt,
        "seconds_start": 0,
        "seconds_total": seconds_total
    }]
    print(f"Conditioning: {conditioning}")

    # Generate stereo audio
    print("Generating audio...")
    output = generate_diffusion_cond(
        model,
        steps=steps,
        cfg_scale=cfg_scale,
        conditioning=conditioning,
        sample_size=sample_size,
        sigma_min=0.3,
        sigma_max=500,
        sampler_type="dpmpp-3m-sde",
        device=device
    )
    print("Audio generated.")

    # Rearrange audio batch to a single sequence
    output = rearrange(output, "b d n -> d (b n)")
    print("Audio rearranged.")

    # Peak normalize, clip, convert to int16
    output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
    print("Audio normalized and converted.")

    # Generate a unique filename for the output
    unique_filename = f"output_{uuid.uuid4().hex}.wav"
    print(f"Saving audio to file: {unique_filename}")

    # Save to file
    torchaudio.save(unique_filename, output, sample_rate)
    print(f"Audio saved: {unique_filename}")
    return unique_filename
'''
    # Convert WAV to MP3 using pydub without ffmpeg
    audio = AudioSegment.from_wav(unique_filename)
    full_path_mp3 = unique_filename.replace('wav', 'mp3')
    audio.export(full_path_mp3, format="mp3")
    
    print(f"Audio converted and saved to MP3: {full_path_mp3}")

    # Return the path to the generated audio file
    return full_path_mp3
'''

# Setting up the Gradio Interface
interface = gr.Interface(
    fn=generate_audio,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"),
        gr.Slider(0, 47, value=30, label="Duration in Seconds"),
        gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps"),
        gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale")
    ],
    outputs=gr.Audio(type="filepath", label="Generated Audio"),
    title="Stable Audio Generator",
    description="Generate variable-length stereo audio at 44.1kHz from text prompts using Stable Audio Open 1.0.",
)

with gr.Blocks() as demo:                
    with gr.Tab("Audio"):
        audio_prompt =  gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
        audio_duration = gr.Slider(0, 47, value=30, label="Duration in Seconds")
        audio_steps =  gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps")
        audio_cfg = gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale")
        audio_process_button = gr.Button("Process Audio")
        audio_output = gr.Audio(type="filepath", label="Generated Audio")
    audio_process_button.click(generate_audio, [audio_prompt, audio_duration, audio_steps, audio_cfg], [audio_output])

# Pre-load the model to avoid multiprocessing issues
model, model_config = load_model()

demo.launch(share=True)