Spaces:
Runtime error
Runtime error
dsmueller
commited on
Commit
·
e51648a
1
Parent(s):
d8a44b5
Update training arguments in app.py
Browse files
app.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -22,7 +22,7 @@
|
|
22 |
},
|
23 |
{
|
24 |
"cell_type": "code",
|
25 |
-
"execution_count":
|
26 |
"metadata": {},
|
27 |
"outputs": [],
|
28 |
"source": [
|
@@ -37,17 +37,9 @@
|
|
37 |
},
|
38 |
{
|
39 |
"cell_type": "code",
|
40 |
-
"execution_count":
|
41 |
"metadata": {},
|
42 |
-
"outputs": [
|
43 |
-
{
|
44 |
-
"name": "stdout",
|
45 |
-
"output_type": "stream",
|
46 |
-
"text": [
|
47 |
-
"Model Max Length: 1000000000000000019884624838656\n"
|
48 |
-
]
|
49 |
-
}
|
50 |
-
],
|
51 |
"source": [
|
52 |
"# model_name='TinyLlama/TinyLlama-1.1B-Chat-v0.1'\n",
|
53 |
"model_name = 'mistralai/Mistral-7B-v0.1'\n",
|
@@ -63,20 +55,9 @@
|
|
63 |
},
|
64 |
{
|
65 |
"cell_type": "code",
|
66 |
-
"execution_count":
|
67 |
"metadata": {},
|
68 |
-
"outputs": [
|
69 |
-
{
|
70 |
-
"name": "stdout",
|
71 |
-
"output_type": "stream",
|
72 |
-
"text": [
|
73 |
-
"Max token length train: 1121\n",
|
74 |
-
"Max token length validation: 38\n",
|
75 |
-
"Block size: 2242\n",
|
76 |
-
"{'project_name': './llms/ams_data_train-100_4ba55532-e0b2-478b-9f5b-beb082e1b557', 'model_name': 'mistralai/Mistral-7B-v0.1', 'repo_id': 'ai-aerospace/ams-data-train-100-11b94ea4-2b2b-4db3-9e69-acb5a5d9f3e8', 'train_data': 'train_data', 'data_directory': './fine_tune_data/', 'block_size': 2242, 'model_max_length': 1121, 'logging_steps': -1, 'evaluation_strategy': 'epoch', 'save_total_limit': 1, 'save_strategy': 'epoch', 'mixed_precision': 'fp16', 'lr': 3e-05, 'epochs': 3, 'batch_size': 2, 'warmup_ratio': 0.1, 'gradient_accumulation': 1, 'optimizer': 'adamw_torch', 'scheduler': 'linear', 'weight_decay': 0, 'max_grad_norm': 1, 'seed': 42, 'quantization': 'int4', 'lora_r': 16, 'lora_alpha': 32, 'lora_dropout': 0.05}\n"
|
77 |
-
]
|
78 |
-
}
|
79 |
-
],
|
80 |
"source": [
|
81 |
"# Write dataset files into data directory\n",
|
82 |
"data_directory = './fine_tune_data/'\n",
|
@@ -147,7 +128,56 @@
|
|
147 |
},
|
148 |
{
|
149 |
"cell_type": "code",
|
150 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
"metadata": {},
|
152 |
"outputs": [],
|
153 |
"source": [
|
@@ -221,90 +251,22 @@
|
|
221 |
"metadata": {},
|
222 |
"outputs": [],
|
223 |
"source": [
|
224 |
-
"trainer = SFTTrainer(\n",
|
225 |
-
"
|
226 |
-
"
|
227 |
-
"
|
228 |
-
"
|
229 |
-
"
|
230 |
-
")\n",
|
231 |
"\n",
|
232 |
-
"trainer.train()"
|
233 |
]
|
234 |
},
|
235 |
{
|
236 |
"cell_type": "code",
|
237 |
-
"execution_count":
|
238 |
"metadata": {},
|
239 |
-
"outputs": [
|
240 |
-
{
|
241 |
-
"data": {
|
242 |
-
"application/vnd.jupyter.widget-view+json": {
|
243 |
-
"model_id": "4fbe714ca43d4e53aec27f4ce4fb4706",
|
244 |
-
"version_major": 2,
|
245 |
-
"version_minor": 0
|
246 |
-
},
|
247 |
-
"text/plain": [
|
248 |
-
"Downloading builder script: 0%| | 0.00/6.77k [00:00<?, ?B/s]"
|
249 |
-
]
|
250 |
-
},
|
251 |
-
"metadata": {},
|
252 |
-
"output_type": "display_data"
|
253 |
-
},
|
254 |
-
{
|
255 |
-
"data": {
|
256 |
-
"application/vnd.jupyter.widget-view+json": {
|
257 |
-
"model_id": "826f51589454434b891a94b0d5ef8a73",
|
258 |
-
"version_major": 2,
|
259 |
-
"version_minor": 0
|
260 |
-
},
|
261 |
-
"text/plain": [
|
262 |
-
"Downloading builder script: 0%| | 0.00/7.36k [00:00<?, ?B/s]"
|
263 |
-
]
|
264 |
-
},
|
265 |
-
"metadata": {},
|
266 |
-
"output_type": "display_data"
|
267 |
-
},
|
268 |
-
{
|
269 |
-
"data": {
|
270 |
-
"application/vnd.jupyter.widget-view+json": {
|
271 |
-
"model_id": "81418551f332492293ee9795f98a62f7",
|
272 |
-
"version_major": 2,
|
273 |
-
"version_minor": 0
|
274 |
-
},
|
275 |
-
"text/plain": [
|
276 |
-
"Downloading builder script: 0%| | 0.00/4.20k [00:00<?, ?B/s]"
|
277 |
-
]
|
278 |
-
},
|
279 |
-
"metadata": {},
|
280 |
-
"output_type": "display_data"
|
281 |
-
},
|
282 |
-
{
|
283 |
-
"data": {
|
284 |
-
"application/vnd.jupyter.widget-view+json": {
|
285 |
-
"model_id": "367f897f76f845d782ebc3f9be4eec4d",
|
286 |
-
"version_major": 2,
|
287 |
-
"version_minor": 0
|
288 |
-
},
|
289 |
-
"text/plain": [
|
290 |
-
"Downloading builder script: 0%| | 0.00/7.55k [00:00<?, ?B/s]"
|
291 |
-
]
|
292 |
-
},
|
293 |
-
"metadata": {},
|
294 |
-
"output_type": "display_data"
|
295 |
-
},
|
296 |
-
{
|
297 |
-
"ename": "NameError",
|
298 |
-
"evalue": "name 'lora_model' is not defined",
|
299 |
-
"output_type": "error",
|
300 |
-
"traceback": [
|
301 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
302 |
-
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
303 |
-
"Cell \u001b[0;32mIn[8], line 18\u001b[0m\n\u001b[1;32m 13\u001b[0m results\u001b[38;5;241m.\u001b[39mupdate(precision_metric\u001b[38;5;241m.\u001b[39mcompute(predictions\u001b[38;5;241m=\u001b[39mpredictions, references \u001b[38;5;241m=\u001b[39m labels, average\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmacro\u001b[39m\u001b[38;5;124m\"\u001b[39m))\n\u001b[1;32m 15\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m results\n\u001b[1;32m 17\u001b[0m trainer \u001b[38;5;241m=\u001b[39m transformers\u001b[38;5;241m.\u001b[39mTrainer(\n\u001b[0;32m---> 18\u001b[0m model\u001b[38;5;241m=\u001b[39m\u001b[43mlora_model\u001b[49m,\n\u001b[1;32m 19\u001b[0m train_dataset\u001b[38;5;241m=\u001b[39mtrain_dataset,\n\u001b[1;32m 20\u001b[0m eval_dataset\u001b[38;5;241m=\u001b[39mval_dataset,\n\u001b[1;32m 21\u001b[0m compute_metrics\u001b[38;5;241m=\u001b[39mcompute_metrics,\n\u001b[1;32m 22\u001b[0m args\u001b[38;5;241m=\u001b[39mtransformers\u001b[38;5;241m.\u001b[39mTrainingArguments(\n\u001b[1;32m 23\u001b[0m per_device_train_batch_size\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m8\u001b[39m,\n\u001b[1;32m 24\u001b[0m per_device_eval_batch_size\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m32\u001b[39m,\n\u001b[1;32m 25\u001b[0m gradient_accumulation_steps\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m4\u001b[39m,\n\u001b[1;32m 26\u001b[0m warmup_steps\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m100\u001b[39m,\n\u001b[1;32m 27\u001b[0m max_steps\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m12276\u001b[39m,\n\u001b[1;32m 28\u001b[0m learning_rate\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m2e-4\u001b[39m,\n\u001b[1;32m 29\u001b[0m fp16\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 30\u001b[0m eval_steps\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1000\u001b[39m,\n\u001b[1;32m 31\u001b[0m logging_steps\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1000\u001b[39m,\n\u001b[1;32m 32\u001b[0m save_steps\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1000\u001b[39m,\n\u001b[1;32m 33\u001b[0m evaluation_strategy\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msteps\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 34\u001b[0m do_eval\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 35\u001b[0m load_best_model_at_end\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 36\u001b[0m metric_for_best_model\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mf1\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 37\u001b[0m output_dir\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmodel_outputs\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 38\u001b[0m logging_dir\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmodel_outputs\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 39\u001b[0m remove_unused_columns \u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, \n\u001b[1;32m 40\u001b[0m report_to\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mwandb\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;66;03m# enable logging to W&B\u001b[39;00m\n\u001b[1;32m 41\u001b[0m ),\n\u001b[1;32m 42\u001b[0m )\n\u001b[1;32m 43\u001b[0m trainer\u001b[38;5;241m.\u001b[39mtrain()\n",
|
304 |
-
"\u001b[0;31mNameError\u001b[0m: name 'lora_model' is not defined"
|
305 |
-
]
|
306 |
-
}
|
307 |
-
],
|
308 |
"source": [
|
309 |
"f1_metric = evaluate.load(\"f1\")\n",
|
310 |
"recall_metric = evaluate.load(\"recall\")\n",
|
@@ -328,26 +290,7 @@
|
|
328 |
" train_dataset=model_params['train_data'],\n",
|
329 |
" eval_dataset=model_params['validation_data'],\n",
|
330 |
" compute_metrics=compute_metrics,\n",
|
331 |
-
" args=
|
332 |
-
" per_device_train_batch_size=model_params['batch_size'],\n",
|
333 |
-
" per_device_eval_batch_size=model_params['batch_size'],\n",
|
334 |
-
" gradient_accumulation_steps=model_params['gradient_accumulation'],\n",
|
335 |
-
" warmup_steps=100,\n",
|
336 |
-
" max_steps=12276,\n",
|
337 |
-
" learning_rate=model_params['lr'],\n",
|
338 |
-
" fp16=True,\n",
|
339 |
-
" eval_steps= 1000,\n",
|
340 |
-
" logging_steps=1000,\n",
|
341 |
-
" save_steps=1000,\n",
|
342 |
-
" evaluation_strategy=model_params['evaluation_strategy'],\n",
|
343 |
-
" do_eval=True,\n",
|
344 |
-
" load_best_model_at_end=True,\n",
|
345 |
-
" metric_for_best_model=\"f1\",\n",
|
346 |
-
" output_dir='model_outputs',\n",
|
347 |
-
" logging_dir='model_outputs',\n",
|
348 |
-
" remove_unused_columns =False, \n",
|
349 |
-
" report_to='wandb' # enable logging to W&B\n",
|
350 |
-
" ),\n",
|
351 |
")\n",
|
352 |
"trainer.train()"
|
353 |
]
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
22 |
},
|
23 |
{
|
24 |
"cell_type": "code",
|
25 |
+
"execution_count": null,
|
26 |
"metadata": {},
|
27 |
"outputs": [],
|
28 |
"source": [
|
|
|
37 |
},
|
38 |
{
|
39 |
"cell_type": "code",
|
40 |
+
"execution_count": null,
|
41 |
"metadata": {},
|
42 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
"source": [
|
44 |
"# model_name='TinyLlama/TinyLlama-1.1B-Chat-v0.1'\n",
|
45 |
"model_name = 'mistralai/Mistral-7B-v0.1'\n",
|
|
|
55 |
},
|
56 |
{
|
57 |
"cell_type": "code",
|
58 |
+
"execution_count": null,
|
59 |
"metadata": {},
|
60 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
"source": [
|
62 |
"# Write dataset files into data directory\n",
|
63 |
"data_directory = './fine_tune_data/'\n",
|
|
|
128 |
},
|
129 |
{
|
130 |
"cell_type": "code",
|
131 |
+
"execution_count": null,
|
132 |
+
"metadata": {},
|
133 |
+
"outputs": [],
|
134 |
+
"source": [
|
135 |
+
"args_custom=transformers.TrainingArguments(\n",
|
136 |
+
" per_device_train_batch_size=model_params['batch_size'],\n",
|
137 |
+
" per_device_eval_batch_size=model_params['batch_size'],\n",
|
138 |
+
" gradient_accumulation_steps=model_params['gradient_accumulation'],\n",
|
139 |
+
" warmup_ratio=model_params['warmup_ratio'],\n",
|
140 |
+
" num_epochs=model_params['epochs'],\n",
|
141 |
+
" learning_rate=model_params['lr'],\n",
|
142 |
+
" fp16=True,\n",
|
143 |
+
" logging_steps=model_params['logging_steps'],\n",
|
144 |
+
" save_total_limit=model_params['save_total_limit'],\n",
|
145 |
+
" evaluation_strategy=model_params['evaluation_strategy'],\n",
|
146 |
+
" metric_for_best_model=\"f1\",\n",
|
147 |
+
" output_dir='model_outputs',\n",
|
148 |
+
" logging_dir='model_outputs',\n",
|
149 |
+
" optim=model_params['optimizer'],\n",
|
150 |
+
" max_grad_norm=model_params['max_grad_norm'],\n",
|
151 |
+
" weight_decay=model_params['weight_decay'],\n",
|
152 |
+
" lr_scheduler_type=model_params['scheduler']\n",
|
153 |
+
")\n",
|
154 |
+
"\n",
|
155 |
+
"# Args from medium article\n",
|
156 |
+
"args_medium=transformers.TrainingArguments(\n",
|
157 |
+
" per_device_train_batch_size=8,\n",
|
158 |
+
" per_device_eval_batch_size=32,\n",
|
159 |
+
" gradient_accumulation_steps=4,\n",
|
160 |
+
" warmup_steps=100,\n",
|
161 |
+
" max_steps=12276,\n",
|
162 |
+
" learning_rate=2e-4,\n",
|
163 |
+
" fp16=True,\n",
|
164 |
+
" eval_steps= 1000,\n",
|
165 |
+
" logging_steps=1000,\n",
|
166 |
+
" save_steps=1000,\n",
|
167 |
+
" evaluation_strategy=\"steps\",\n",
|
168 |
+
" do_eval=True,\n",
|
169 |
+
" load_best_model_at_end=True,\n",
|
170 |
+
" metric_for_best_model=\"f1\",\n",
|
171 |
+
" output_dir='model_outputs',\n",
|
172 |
+
" logging_dir='model_outputs',\n",
|
173 |
+
" remove_unused_columns =False, \n",
|
174 |
+
" report_to='wandb' # enable logging to W&B\n",
|
175 |
+
")"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": null,
|
181 |
"metadata": {},
|
182 |
"outputs": [],
|
183 |
"source": [
|
|
|
251 |
"metadata": {},
|
252 |
"outputs": [],
|
253 |
"source": [
|
254 |
+
"# trainer = SFTTrainer(\n",
|
255 |
+
"# model,\n",
|
256 |
+
"# train_dataset=dataset,\n",
|
257 |
+
"# dataset_text_field=\"text\",\n",
|
258 |
+
"# peft_config=peft_config,\n",
|
259 |
+
"# max_seq_length=model_params['model_max_length']\n",
|
260 |
+
"# )\n",
|
261 |
"\n",
|
262 |
+
"# trainer.train()"
|
263 |
]
|
264 |
},
|
265 |
{
|
266 |
"cell_type": "code",
|
267 |
+
"execution_count": null,
|
268 |
"metadata": {},
|
269 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
"source": [
|
271 |
"f1_metric = evaluate.load(\"f1\")\n",
|
272 |
"recall_metric = evaluate.load(\"recall\")\n",
|
|
|
290 |
" train_dataset=model_params['train_data'],\n",
|
291 |
" eval_dataset=model_params['validation_data'],\n",
|
292 |
" compute_metrics=compute_metrics,\n",
|
293 |
+
" args=args_custom\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
")\n",
|
295 |
"trainer.train()"
|
296 |
]
|
app.py
CHANGED
@@ -105,6 +105,49 @@ for key, value in model_params.items():
|
|
105 |
|
106 |
print(model_params)
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
### Load model and peft config, calculate trainable parameters
|
109 |
model = AutoModelForCausalLM.from_pretrained(
|
110 |
model_name,
|
@@ -141,25 +184,6 @@ trainer = transformers.Trainer(
|
|
141 |
train_dataset=model_params['train_data'],
|
142 |
eval_dataset=model_params['validation_data'],
|
143 |
compute_metrics=compute_metrics,
|
144 |
-
args=
|
145 |
-
per_device_train_batch_size=model_params['batch_size'],
|
146 |
-
per_device_eval_batch_size=model_params['batch_size'],
|
147 |
-
gradient_accumulation_steps=model_params['gradient_accumulation'],
|
148 |
-
warmup_steps=100,
|
149 |
-
max_steps=12276,
|
150 |
-
learning_rate=model_params['lr'],
|
151 |
-
fp16=True,
|
152 |
-
eval_steps= 1000,
|
153 |
-
logging_steps=1000,
|
154 |
-
save_steps=1000,
|
155 |
-
evaluation_strategy=model_params['evaluation_strategy'],
|
156 |
-
do_eval=True,
|
157 |
-
load_best_model_at_end=True,
|
158 |
-
metric_for_best_model="f1",
|
159 |
-
output_dir='model_outputs',
|
160 |
-
logging_dir='model_outputs',
|
161 |
-
remove_unused_columns =False,
|
162 |
-
report_to='wandb' # enable logging to W&B
|
163 |
-
),
|
164 |
)
|
165 |
trainer.train()
|
|
|
105 |
|
106 |
print(model_params)
|
107 |
|
108 |
+
args_custom=transformers.TrainingArguments(
|
109 |
+
per_device_train_batch_size=model_params['batch_size'],
|
110 |
+
per_device_eval_batch_size=model_params['batch_size'],
|
111 |
+
gradient_accumulation_steps=model_params['gradient_accumulation'],
|
112 |
+
warmup_ratio=model_params['warmup_ratio'],
|
113 |
+
num_epochs=model_params['epochs'],
|
114 |
+
learning_rate=model_params['lr'],
|
115 |
+
fp16=True,
|
116 |
+
logging_steps=model_params['logging_steps'],
|
117 |
+
save_total_limit=model_params['save_total_limit'],
|
118 |
+
evaluation_strategy=model_params['evaluation_strategy'],
|
119 |
+
metric_for_best_model="f1",
|
120 |
+
output_dir='model_outputs',
|
121 |
+
logging_dir='model_outputs',
|
122 |
+
optim=model_params['optimizer'],
|
123 |
+
max_grad_norm=model_params['max_grad_norm'],
|
124 |
+
weight_decay=model_params['weight_decay'],
|
125 |
+
lr_scheduler_type=model_params['scheduler']
|
126 |
+
)
|
127 |
+
|
128 |
+
### Args from medium article
|
129 |
+
args_medium=transformers.TrainingArguments(
|
130 |
+
per_device_train_batch_size=8,
|
131 |
+
per_device_eval_batch_size=32,
|
132 |
+
gradient_accumulation_steps=4,
|
133 |
+
warmup_steps=100,
|
134 |
+
max_steps=12276,
|
135 |
+
learning_rate=2e-4,
|
136 |
+
fp16=True,
|
137 |
+
eval_steps= 1000,
|
138 |
+
logging_steps=1000,
|
139 |
+
save_steps=1000,
|
140 |
+
evaluation_strategy="steps",
|
141 |
+
do_eval=True,
|
142 |
+
load_best_model_at_end=True,
|
143 |
+
metric_for_best_model="f1",
|
144 |
+
output_dir='model_outputs',
|
145 |
+
logging_dir='model_outputs',
|
146 |
+
remove_unused_columns =False,
|
147 |
+
report_to='wandb' # enable logging to W&B
|
148 |
+
)
|
149 |
+
###
|
150 |
+
|
151 |
### Load model and peft config, calculate trainable parameters
|
152 |
model = AutoModelForCausalLM.from_pretrained(
|
153 |
model_name,
|
|
|
184 |
train_dataset=model_params['train_data'],
|
185 |
eval_dataset=model_params['validation_data'],
|
186 |
compute_metrics=compute_metrics,
|
187 |
+
args=args_custom
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
)
|
189 |
trainer.train()
|