from datasets import load_dataset from trl import SFTTrainer from peft import LoraConfig import os from uuid import uuid4 import pandas as pd import subprocess from transformers import AutoModelForCausalLM, AutoTokenizer def max_token_len(dataset): max_seq_length = 0 for row in dataset: tokens = len(tokenizer(row['text'])['input_ids']) if tokens > max_seq_length: max_seq_length = tokens return max_seq_length # model_name='TinyLlama/TinyLlama-1.1B-Chat-v0.1' model_name = 'mistralai/Mistral-7B-v0.1' # model_name = 'distilbert-base-uncased' tokenizer = AutoTokenizer.from_pretrained(model_name) model_max_length = tokenizer.model_max_length print("Model Max Length:", model_max_length) # dataset = load_dataset("imdb", split="train") dataset_name = 'ai-aerospace/ams_data_train_generic_v0.1_100' dataset = load_dataset(dataset_name, split="train") # Write dataset files into data directory data_directory = './fine_tune_data/' # Create the data directory if it doesn't exist os.makedirs(data_directory, exist_ok=True) # Write the train data to a CSV file train_data='train_data' train_filename = os.path.join(data_directory, train_data) dataset['train'].to_pandas().to_csv(train_filename+'.csv', columns=['text'], index=False) max_token_length_train=max_token_len(dataset['train']) print('Max token length train: '+str(max_token_length_train)) # Write the validation data to a CSV file validation_data='validation_data' validation_filename = os.path.join(data_directory, validation_data) dataset['validation'].to_pandas().to_csv(validation_filename+'.csv', columns=['text'], index=False) max_token_length_validation=max_token_len(dataset['validation']) print('Max token length validation: '+str(max_token_length_validation)) max_token_length=max(max_token_length_train,max_token_length_validation) if max_token_length > model_max_length: raise ValueError("Maximum token length exceeds model limits.") block_size=2*max_token_length print('Block size: '+str(block_size)) # Define project parameters username='ai-aerospace' project_name='./llms/'+'ams_data_train-100_'+str(uuid4()) repo_name='ams-data-train-100-'+str(uuid4()) model_params={ "project_name": project_name, "model_name": model_name, "repo_id": username+'/'+repo_name, "train_data": train_data, "validation_data": validation_data, "data_directory": data_directory, "block_size": block_size, "model_max_length": max_token_length, "logging_steps": -1, "evaluation_strategy": "epoch", "save_total_limit": 1, "save_strategy": "epoch", "mixed_precision": "fp16", "lr": 0.00003, "epochs": 3, "batch_size": 2, "warmup_ratio": 0.1, "gradient_accumulation": 1, "optimizer": "adamw_torch", "scheduler": "linear", "weight_decay": 0, "max_grad_norm": 1, "seed": 42, "quantization": "int4", "lora_r": 16, "lora_alpha": 32, "lora_dropout": 0.05 } for key, value in model_params.items(): os.environ[key] = str(value) print(model_params) ### Load model model = AutoModelForCausalLM.from_pretrained( model_name, load_in_4bit=True ) ### Start trainer # trainer = SFTTrainer( # model_name, # train_dataset=dataset, # dataset_text_field="text", # max_seq_length=512, # ) peft_config = LoraConfig( r=model_params['lora_r'], lora_alpha=model_params['lora_alpha'], lora_dropout=model_params['lora_dropout'] ) trainer = SFTTrainer( model, train_dataset=dataset, dataset_text_field="text", peft_config=peft_config, max_seq_length=model_params['model_max_length'] ) trainer.train()