Update
Browse files- app.py +3 -2
- src/leaderboard/read_evals.py +1 -1
- src/populate.py +1 -2
app.py
CHANGED
@@ -54,10 +54,11 @@ for bug_id, time in bug_id_to_time.items():
|
|
54 |
timeline_xs.append(time)
|
55 |
timeline_ys.append(0)
|
56 |
timeline_cols.append("Baseline")
|
57 |
-
LEADERBOARD_DF = get_leaderboard_df(EVAL_REQUESTS_PATH,
|
58 |
for row in LEADERBOARD_DF.itertuples():
|
|
|
59 |
model_cnt += 1
|
60 |
-
for fix in
|
61 |
timeline_xs.append(bug_id_to_time[fix])
|
62 |
timeline_ys.append(model_cnt)
|
63 |
timeline_cols.append(row.method_name)
|
|
|
54 |
timeline_xs.append(time)
|
55 |
timeline_ys.append(0)
|
56 |
timeline_cols.append("Baseline")
|
57 |
+
LEADERBOARD_DF = get_leaderboard_df(EVAL_REQUESTS_PATH, total_issues)
|
58 |
for row in LEADERBOARD_DF.itertuples():
|
59 |
+
print(row)
|
60 |
model_cnt += 1
|
61 |
+
for fix in row.fixed_bug_ids:
|
62 |
timeline_xs.append(bug_id_to_time[fix])
|
63 |
timeline_ys.append(model_cnt)
|
64 |
timeline_cols.append(row.method_name)
|
src/leaderboard/read_evals.py
CHANGED
@@ -94,7 +94,7 @@ class EvalResult:
|
|
94 |
(self.build_count - self.build_failure_count) * 100.0 / self.build_count, 1
|
95 |
),
|
96 |
AutoEvalColumn.mttr.name: self.mttr,
|
97 |
-
"fixed_bug_ids":
|
98 |
"method_id": self.method_name + "(" + self.model_name + ")",
|
99 |
}
|
100 |
|
|
|
94 |
(self.build_count - self.build_failure_count) * 100.0 / self.build_count, 1
|
95 |
),
|
96 |
AutoEvalColumn.mttr.name: self.mttr,
|
97 |
+
"fixed_bug_ids": self.fixed_bug_ids,
|
98 |
"method_id": self.method_name + "(" + self.model_name + ")",
|
99 |
}
|
100 |
|
src/populate.py
CHANGED
@@ -7,12 +7,11 @@ from src.display.utils import AutoEvalColumn
|
|
7 |
from src.leaderboard.read_evals import get_raw_eval_results
|
8 |
|
9 |
|
10 |
-
def get_leaderboard_df(requests_path: str,
|
11 |
"""Creates a dataframe from all the individual experiment results"""
|
12 |
raw_data = get_raw_eval_results(requests_path)
|
13 |
all_data_json = [v.to_dict(total_issues) for v in raw_data]
|
14 |
|
15 |
df = pd.DataFrame.from_records(all_data_json)
|
16 |
df = df.sort_values(by=[AutoEvalColumn.full_pass_count.name], ascending=False)
|
17 |
-
df = df[cols].round(decimals=2)
|
18 |
return df
|
|
|
7 |
from src.leaderboard.read_evals import get_raw_eval_results
|
8 |
|
9 |
|
10 |
+
def get_leaderboard_df(requests_path: str, total_issues: int) -> pd.DataFrame:
|
11 |
"""Creates a dataframe from all the individual experiment results"""
|
12 |
raw_data = get_raw_eval_results(requests_path)
|
13 |
all_data_json = [v.to_dict(total_issues) for v in raw_data]
|
14 |
|
15 |
df = pd.DataFrame.from_records(all_data_json)
|
16 |
df = df.sort_values(by=[AutoEvalColumn.full_pass_count.name], ascending=False)
|
|
|
17 |
return df
|