change to vc pipeline to generate similarity score
Browse files- vc_infer_pipeline.py +4 -1
vc_infer_pipeline.py
CHANGED
|
@@ -387,7 +387,7 @@ class VC(object):
|
|
| 387 |
assert feats.dim() == 1, feats.dim()
|
| 388 |
feats = feats.view(1, -1)
|
| 389 |
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
| 390 |
-
|
| 391 |
inputs = {
|
| 392 |
"source": feats.to(self.device),
|
| 393 |
"padding_mask": padding_mask,
|
|
@@ -407,6 +407,9 @@ class VC(object):
|
|
| 407 |
npy = feats[0].cpu().numpy()
|
| 408 |
if self.is_half:
|
| 409 |
npy = npy.astype("float32")
|
|
|
|
|
|
|
|
|
|
| 410 |
|
| 411 |
# _, I = index.search(npy, 1)
|
| 412 |
# npy = big_npy[I.squeeze()]
|
|
|
|
| 387 |
assert feats.dim() == 1, feats.dim()
|
| 388 |
feats = feats.view(1, -1)
|
| 389 |
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
| 390 |
+
new_npy = None
|
| 391 |
inputs = {
|
| 392 |
"source": feats.to(self.device),
|
| 393 |
"padding_mask": padding_mask,
|
|
|
|
| 407 |
npy = feats[0].cpu().numpy()
|
| 408 |
if self.is_half:
|
| 409 |
npy = npy.astype("float32")
|
| 410 |
+
new_npy=npy
|
| 411 |
+
# Export the new_npy to a file
|
| 412 |
+
np.save("new_npy.npy", new_npy)
|
| 413 |
|
| 414 |
# _, I = index.search(npy, 1)
|
| 415 |
# npy = big_npy[I.squeeze()]
|