#!/usr/bin/env python3 # -*- encoding: utf-8 -*- # Copyright FunASR (https://github.com/alibaba-damo-academy/FunClip). All Rights Reserved. # MIT License (https://opensource.org/licenses/MIT) import re import os import sys import copy import librosa import logging import argparse import numpy as np import soundfile as sf from moviepy.editor import * import moviepy.editor as mpy from moviepy.video.tools.subtitles import SubtitlesClip, TextClip from moviepy.editor import VideoFileClip, concatenate_videoclips from moviepy.video.compositing import CompositeVideoClip from utils.subtitle_utils import generate_srt, generate_srt_clip,generate_audio_srt,trans_format from utils.argparse_tools import ArgumentParser, get_commandline_args from utils.trans_utils import pre_proc, proc, write_state, load_state, proc_spk, convert_pcm_to_float import whisper class VideoClipper(): def __init__(self, model): logging.warning("Initializing VideoClipper.") self.GLOBAL_COUNT = 0 self.model = model def recog(self, audio_input, state=None, output_dir=None,text=None): ''' 将音频输入转化为文本。它可以选择性地进行说话人分离(SD, Speaker Diarization)和生成字幕文件(SRT格式)。 return: res_text:识别出的文本内容。 res_srt:识别内容生成的 SRT 字幕格式。 state:包含了识别的原始结果、时间戳和句子信息的状态字典 ''' if state is None: state = {} sr, data = audio_input # Convert to float64 consistently (includes data type checking) data = convert_pcm_to_float(data) # assert sr == 16000, "16kHz sample rate required, {} given.".format(sr) if sr != 16000: # resample with librosa data = librosa.resample(data, orig_sr=sr, target_sr=16000) if len(data.shape) == 2: # multi-channel wav input logging.warning("Input wav shape: {}, only first channel reserved.".format(data.shape)) data = data[:,0] state['audio_input'] = (sr, data) rec_result = trans_format(text) res_srt = generate_srt(rec_result[0]['sentence_info']) state['recog_res_raw'] = rec_result[0]['raw_text'] state['timestamp'] = rec_result[0]['timestamp'] state['sentences'] = rec_result[0]['sentence_info'] res_text = rec_result[0]['text'] return res_text, res_srt, state def clip(self, dest_text, start_ost, end_ost, state, dest_spk=None, output_dir=None, timestamp_list=None): # get from state ''' dest_text:目标文本,根据这个文本内容来定位音频中相应的片段。 start_ost 和 end_ost:起始和结束时间偏移量,用于微调音频片段的起止位置。 state:包含函数执行所需的数据状态,例如音频数据、识别结果、时间戳等。 dest_spk:目标说话者,如果指定了这个参数,函数会根据说话者信息来提取音频片段。 output_dir:输出目录,用于保存结果。 timestamp_list:时间戳列表,如果提供了时间戳,则直接按照这些时间戳提取音频片段。 ''' audio_input = state['audio_input'] recog_res_raw = state['recog_res_raw'] timestamp = state['timestamp'] sentences = state['sentences'] sr, data = audio_input data = data.astype(np.float64) if timestamp_list is None: all_ts = [] if dest_spk is None or dest_spk == '' or 'sd_sentences' not in state: for _dest_text in dest_text.split('#'): if '[' in _dest_text: match = re.search(r'\[(\d+),\s*(\d+)\]', _dest_text) if match: offset_b, offset_e = map(int, match.groups()) log_append = "" else: offset_b, offset_e = 0, 0 log_append = "(Bracket detected in dest_text but offset time matching failed)" _dest_text = _dest_text[:_dest_text.find('[')] else: log_append = "" offset_b, offset_e = 0, 0 _dest_text = pre_proc(_dest_text) ts = proc(recog_res_raw, timestamp, _dest_text) # 得到时间戳 for _ts in ts: all_ts.append([_ts[0]+offset_b*16, _ts[1]+offset_e*16]) if len(ts) > 1 and match: log_append += '(offsets detected but No.{} sub-sentence matched to {} periods in audio, \ offsets are applied to all periods)' else: for _dest_spk in dest_spk.split('#'): ts = proc_spk(_dest_spk, state['sd_sentences']) for _ts in ts: all_ts.append(_ts) log_append = "" else: all_ts = timestamp_list ts = all_ts # ts.sort() srt_index = 0 clip_srt = "" if len(ts): start, end = ts[0] start = min(max(0, start+start_ost*16), len(data)) end = min(max(0, end+end_ost*16), len(data)) res_audio = data[start:end] start_end_info = "from {} to {}".format(start/16000, end/16000) srt_clip, _, srt_index = generate_srt_clip(sentences, start/16000.0, end/16000.0, begin_index=srt_index) clip_srt += srt_clip for _ts in ts[1:]: # multiple sentence input or multiple output matched start, end = _ts start = min(max(0, start+start_ost*16), len(data)) end = min(max(0, end+end_ost*16), len(data)) start_end_info += ", from {} to {}".format(start, end) res_audio = np.concatenate([res_audio, data[start+start_ost*16:end+end_ost*16]], -1) srt_clip, _, srt_index = generate_srt_clip(sentences, start/16000.0, end/16000.0, begin_index=srt_index-1) clip_srt += srt_clip if len(ts): message = "{} periods found in the speech: ".format(len(ts)) + start_end_info + log_append else: message = "No period found in the speech, return raw speech. You may check the recognition result and try other destination text." res_audio = data return (sr, res_audio), message, clip_srt # 音频数据、消息文本和生成的 SRT 字幕 def video_recog(self, video_filename, output_dir=None,ASR="whisper"): '''通过处理视频获得想要的视频、音频以及其他信息''' video = mpy.VideoFileClip(video_filename) # Extract the base name, add '_clip.mp4', and 'wav' if output_dir is not None: os.makedirs(output_dir, exist_ok=True) _, base_name = os.path.split(video_filename) base_name, _ = os.path.splitext(base_name) clip_video_file = base_name + '_clip.mp4' audio_file = base_name + '.wav' audio_file = os.path.join(output_dir, audio_file) else: base_name, _ = os.path.splitext(video_filename) clip_video_file = base_name + '_clip.mp4' audio_file = base_name + '.wav' video.audio.write_audiofile(audio_file) # 在这里使用whisper对音频文件进行处理 result_audio = self.model.transcribe(audio_file,language = "zh", word_timestamps=True) wav = librosa.load(audio_file, sr=16000)[0] # delete the audio file after processing if os.path.exists(audio_file): os.remove(audio_file) state = { 'video_filename': video_filename, 'clip_video_file': clip_video_file, 'video': video, } return self.recog((16000, wav), state, output_dir,text=result_audio) def video_clip(self, dest_text, start_ost, end_ost, state, font_size=32, font_color='white', add_sub=False, dest_spk=None, output_dir=None, timestamp_list=None): # get from state recog_res_raw = state['recog_res_raw'] timestamp = state['timestamp'] sentences = state['sentences'] video = state['video'] clip_video_file = state['clip_video_file'] video_filename = state['video_filename'] if timestamp_list is None: all_ts = [] if dest_spk is None or dest_spk == '' or 'sd_sentences' not in state: for _dest_text in dest_text.split('#'): if '[' in _dest_text: match = re.search(r'\[(\d+),\s*(\d+)\]', _dest_text) if match: offset_b, offset_e = map(int, match.groups()) log_append = "" else: offset_b, offset_e = 0, 0 log_append = "(Bracket detected in dest_text but offset time matching failed)" _dest_text = _dest_text[:_dest_text.find('[')] else: offset_b, offset_e = 0, 0 log_append = "" # import pdb; pdb.set_trace() _dest_text = pre_proc(_dest_text) ts = proc(recog_res_raw, timestamp, _dest_text.lower()) for _ts in ts: all_ts.append([_ts[0]+offset_b*16, _ts[1]+offset_e*16]) if len(ts) > 1 and match: log_append += '(offsets detected but No.{} sub-sentence matched to {} periods in audio, \ offsets are applied to all periods)' else: for _dest_spk in dest_spk.split('#'): ts = proc_spk(_dest_spk, state['sd_sentences']) for _ts in ts: all_ts.append(_ts) else: # AI clip pass timestamp as input directly all_ts = [[i[0]*16.0, i[1]*16.0] for i in timestamp_list] srt_index = 0 time_acc_ost = 0.0 ts = all_ts # ts.sort() clip_srt = "" if len(ts): # if self.lang == 'en' and isinstance(sentences, str): # sentences = sentences.split() start, end = ts[0][0] / 16000, ts[0][1] / 16000 srt_clip, subs, srt_index = generate_srt_clip(sentences, start, end, begin_index=srt_index, time_acc_ost=time_acc_ost) start, end = start+start_ost/1000.0, end+end_ost/1000.0 video_clip = video.subclip(start, end) start_end_info = "from {} to {}".format(start, end) clip_srt += srt_clip if add_sub: # 叠加字幕 generator = lambda txt: TextClip(txt, font='./font/STHeitiMedium.ttc', fontsize=font_size, color=font_color) subtitles = SubtitlesClip(subs, generator) video_clip = CompositeVideoClip([video_clip, subtitles.set_pos(('center','bottom'))]) concate_clip = [video_clip] time_acc_ost += end+end_ost/1000.0 - (start+start_ost/1000.0) for _ts in ts[1:]: start, end = _ts[0] / 16000, _ts[1] / 16000 srt_clip, subs, srt_index = generate_srt_clip(sentences, start, end, begin_index=srt_index-1, time_acc_ost=time_acc_ost) if not len(subs): continue chi_subs = [] sub_starts = subs[0][0][0] for sub in subs: chi_subs.append(((sub[0][0]-sub_starts, sub[0][1]-sub_starts), sub[1])) start, end = start+start_ost/1000.0, end+end_ost/1000.0 _video_clip = video.subclip(start, end) start_end_info += ", from {} to {}".format(str(start)[:5], str(end)[:5]) clip_srt += srt_clip if add_sub: generator = lambda txt: TextClip(txt, font='./font/STHeitiMedium.ttc', fontsize=font_size, color=font_color) subtitles = SubtitlesClip(chi_subs, generator) _video_clip = CompositeVideoClip([_video_clip, subtitles.set_pos(('center','bottom'))]) # _video_clip.write_videofile("debug.mp4", audio_codec="aac") concate_clip.append(copy.copy(_video_clip)) time_acc_ost += end+end_ost/1000.0 - (start+start_ost/1000.0) message = "{} periods found in the audio: ".format(len(ts)) + start_end_info logging.warning("Concating...") if len(concate_clip) > 1: # 对视频片段进行拼接 video_clip = concatenate_videoclips(concate_clip) # clip_video_file = clip_video_file[:-4] + '_no{}.mp4'.format(self.GLOBAL_COUNT) if output_dir is not None: os.makedirs(output_dir, exist_ok=True) _, file_with_extension = os.path.split(clip_video_file) clip_video_file_name, _ = os.path.splitext(file_with_extension) print(output_dir, clip_video_file) clip_video_file = os.path.join(output_dir, "{}_no{}.mp4".format(clip_video_file_name, self.GLOBAL_COUNT)) temp_audio_file = os.path.join(output_dir, "{}_tempaudio_no{}.mp4".format(clip_video_file_name, self.GLOBAL_COUNT)) else: clip_video_file = clip_video_file[:-4] + '_no{}.mp4'.format(self.GLOBAL_COUNT) temp_audio_file = clip_video_file[:-4] + '_tempaudio_no{}.mp4'.format(self.GLOBAL_COUNT) video_clip.write_videofile(clip_video_file, audio_codec="aac", temp_audiofile=temp_audio_file,fps=25) #写入指定文件路径下 self.GLOBAL_COUNT += 1 else: clip_video_file = video_filename message = "No period found in the audio, return raw speech. You may check the recognition result and try other destination text." srt_clip = '' return clip_video_file, message, clip_srt def get_parser(): parser = ArgumentParser( description="ClipVideo Argument", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "--stage", type=int, choices=(1, 2), help="Stage, 0 for recognizing and 1 for clipping", required=True ) parser.add_argument( "--file", type=str, default=None, help="Input file path", required=True ) parser.add_argument( "--sd_switch", type=str, choices=("no", "yes"), default="no", help="Turn on the speaker diarization or not", ) parser.add_argument( "--output_dir", type=str, default='./output', help="Output files path", ) parser.add_argument( "--dest_text", type=str, default=None, help="Destination text string for clipping", ) parser.add_argument( "--dest_spk", type=str, default=None, help="Destination spk id for clipping", ) parser.add_argument( "--start_ost", type=int, default=0, help="Offset time in ms at beginning for clipping" ) parser.add_argument( "--end_ost", type=int, default=0, help="Offset time in ms at ending for clipping" ) parser.add_argument( "--output_file", type=str, default=None, help="Output file path" ) parser.add_argument( "--lang", type=str, default='zh', help="language" ) return parser