Spaces:
Running
Running
File size: 11,628 Bytes
85e3d20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Unit tests for `baselines.py`."""
import copy
import functools
from typing import Generator
from absl.testing import absltest
from absl.testing import parameterized
import chex
from clrs._src import baselines
from clrs._src import dataset
from clrs._src import probing
from clrs._src import processors
from clrs._src import samplers
from clrs._src import specs
import haiku as hk
import jax
import numpy as np
_Array = np.ndarray
def _error(x, y):
return np.sum(np.abs(x-y))
def _make_sampler(algo: str, length: int) -> samplers.Sampler:
sampler, _ = samplers.build_sampler(
algo,
seed=samplers.CLRS30['val']['seed'],
num_samples=samplers.CLRS30['val']['num_samples'],
length=length,
)
return sampler
def _without_permutation(feedback):
"""Replace should-be permutations with pointers."""
outputs = []
for x in feedback.outputs:
if x.type_ != specs.Type.SHOULD_BE_PERMUTATION:
outputs.append(x)
continue
assert x.location == specs.Location.NODE
outputs.append(probing.DataPoint(name=x.name, location=x.location,
type_=specs.Type.POINTER, data=x.data))
return feedback._replace(outputs=outputs)
def _make_iterable_sampler(
algo: str, batch_size: int,
length: int) -> Generator[samplers.Feedback, None, None]:
sampler = _make_sampler(algo, length)
while True:
yield _without_permutation(sampler.next(batch_size))
def _remove_permutation_from_spec(spec):
"""Modify spec to turn permutation type to pointer."""
new_spec = {}
for k in spec:
if (spec[k][1] == specs.Location.NODE and
spec[k][2] == specs.Type.SHOULD_BE_PERMUTATION):
new_spec[k] = (spec[k][0], spec[k][1], specs.Type.POINTER)
else:
new_spec[k] = spec[k]
return new_spec
class BaselinesTest(parameterized.TestCase):
def test_full_vs_chunked(self):
"""Test that chunking does not affect gradients."""
batch_size = 4
length = 8
algo = 'insertion_sort'
spec = _remove_permutation_from_spec(specs.SPECS[algo])
rng_key = jax.random.PRNGKey(42)
full_ds = _make_iterable_sampler(algo, batch_size, length)
chunked_ds = dataset.chunkify(
_make_iterable_sampler(algo, batch_size, length),
length)
double_chunked_ds = dataset.chunkify(
_make_iterable_sampler(algo, batch_size, length),
length * 2)
full_batches = [next(full_ds) for _ in range(2)]
chunked_batches = [next(chunked_ds) for _ in range(2)]
double_chunk_batch = next(double_chunked_ds)
with chex.fake_jit(): # jitting makes test longer
processor_factory = processors.get_processor_factory(
'mpnn', use_ln=False, nb_triplet_fts=0)
common_args = dict(processor_factory=processor_factory, hidden_dim=8,
learning_rate=0.01,
decode_hints=True, encode_hints=True)
b_full = baselines.BaselineModel(
spec, dummy_trajectory=full_batches[0], **common_args)
b_full.init(full_batches[0].features, seed=42) # pytype: disable=wrong-arg-types # jax-ndarray
full_params = b_full.params
full_loss_0 = b_full.feedback(rng_key, full_batches[0])
b_full.params = full_params
full_loss_1 = b_full.feedback(rng_key, full_batches[1])
new_full_params = b_full.params
b_chunked = baselines.BaselineModelChunked(
spec, dummy_trajectory=chunked_batches[0], **common_args)
b_chunked.init([[chunked_batches[0].features]], seed=42) # pytype: disable=wrong-arg-types # jax-ndarray
chunked_params = b_chunked.params
jax.tree_util.tree_map(np.testing.assert_array_equal, full_params,
chunked_params)
chunked_loss_0 = b_chunked.feedback(rng_key, chunked_batches[0])
b_chunked.params = chunked_params
chunked_loss_1 = b_chunked.feedback(rng_key, chunked_batches[1])
new_chunked_params = b_chunked.params
b_chunked.params = chunked_params
double_chunked_loss = b_chunked.feedback(rng_key, double_chunk_batch)
# Test that losses match
np.testing.assert_allclose(full_loss_0, chunked_loss_0, rtol=1e-4)
np.testing.assert_allclose(full_loss_1, chunked_loss_1, rtol=1e-4)
np.testing.assert_allclose(full_loss_0 + full_loss_1,
2 * double_chunked_loss,
rtol=1e-4)
# Test that gradients are the same (parameters changed equally).
# First check that gradients were not zero, i.e., parameters have changed.
param_change, _ = jax.tree_util.tree_flatten(
jax.tree_util.tree_map(_error, full_params, new_full_params))
self.assertGreater(np.mean(param_change), 0.1)
# Now check that full and chunked gradients are the same.
jax.tree_util.tree_map(
functools.partial(np.testing.assert_allclose, rtol=1e-4),
new_full_params, new_chunked_params)
def test_multi_vs_single(self):
"""Test that multi = single when we only train one of the algorithms."""
batch_size = 4
length = 16
algos = ['insertion_sort', 'activity_selector', 'bfs']
spec = [_remove_permutation_from_spec(specs.SPECS[algo]) for algo in algos]
rng_key = jax.random.PRNGKey(42)
full_ds = [_make_iterable_sampler(algo, batch_size, length)
for algo in algos]
full_batches = [next(ds) for ds in full_ds]
full_batches_2 = [next(ds) for ds in full_ds]
with chex.fake_jit(): # jitting makes test longer
processor_factory = processors.get_processor_factory(
'mpnn', use_ln=False, nb_triplet_fts=0)
common_args = dict(processor_factory=processor_factory, hidden_dim=8,
learning_rate=0.01,
decode_hints=True, encode_hints=True)
b_single = baselines.BaselineModel(
spec[0], dummy_trajectory=full_batches[0], **common_args)
b_multi = baselines.BaselineModel(
spec, dummy_trajectory=full_batches, **common_args)
b_single.init(full_batches[0].features, seed=0) # pytype: disable=wrong-arg-types # jax-ndarray
b_multi.init([f.features for f in full_batches], seed=0) # pytype: disable=wrong-arg-types # jax-ndarray
single_params = []
single_losses = []
multi_params = []
multi_losses = []
single_params.append(copy.deepcopy(b_single.params))
single_losses.append(b_single.feedback(rng_key, full_batches[0]))
single_params.append(copy.deepcopy(b_single.params))
single_losses.append(b_single.feedback(rng_key, full_batches_2[0]))
single_params.append(copy.deepcopy(b_single.params))
multi_params.append(copy.deepcopy(b_multi.params))
multi_losses.append(b_multi.feedback(rng_key, full_batches[0],
algorithm_index=0))
multi_params.append(copy.deepcopy(b_multi.params))
multi_losses.append(b_multi.feedback(rng_key, full_batches_2[0],
algorithm_index=0))
multi_params.append(copy.deepcopy(b_multi.params))
# Test that losses match
np.testing.assert_array_equal(single_losses, multi_losses)
# Test that loss decreased
assert single_losses[1] < single_losses[0]
# Test that param changes were the same in single and multi-algorithm
for single, multi in zip(single_params, multi_params):
assert hk.data_structures.is_subset(subset=single, superset=multi)
for module_name, params in single.items():
jax.tree_util.tree_map(np.testing.assert_array_equal, params,
multi[module_name])
# Test that params change for the trained algorithm, but not the others
for module_name, params in multi_params[0].items():
param_changes = jax.tree_util.tree_map(lambda a, b: np.sum(np.abs(a - b)),
params,
multi_params[1][module_name])
param_change = sum(param_changes.values())
if module_name in single_params[0]: # params of trained algorithm
assert param_change > 1e-3
else: # params of non-trained algorithms
assert param_change == 0.0
@parameterized.parameters(True, False)
def test_multi_algorithm_idx(self, is_chunked):
"""Test that algorithm selection works as intended."""
batch_size = 4
length = 8
algos = ['insertion_sort', 'activity_selector', 'bfs']
spec = [_remove_permutation_from_spec(specs.SPECS[algo]) for algo in algos]
rng_key = jax.random.PRNGKey(42)
if is_chunked:
ds = [dataset.chunkify(_make_iterable_sampler(algo, batch_size, length),
2 * length) for algo in algos]
else:
ds = [_make_iterable_sampler(algo, batch_size, length) for algo in algos]
batches = [next(d) for d in ds]
processor_factory = processors.get_processor_factory(
'mpnn', use_ln=False, nb_triplet_fts=0)
common_args = dict(processor_factory=processor_factory, hidden_dim=8,
learning_rate=0.01,
decode_hints=True, encode_hints=True)
if is_chunked:
baseline = baselines.BaselineModelChunked(
spec, dummy_trajectory=batches, **common_args)
baseline.init([[f.features for f in batches]], seed=0) # pytype: disable=wrong-arg-types # jax-ndarray
else:
baseline = baselines.BaselineModel(
spec, dummy_trajectory=batches, **common_args)
baseline.init([f.features for f in batches], seed=0) # pytype: disable=wrong-arg-types # jax-ndarray
# Find out what parameters change when we train each algorithm
def _change(x, y):
changes = {}
for module_name, params in x.items():
changes[module_name] = sum(
jax.tree_util.tree_map(
lambda a, b: np.sum(np.abs(a-b)), params, y[module_name]
).values())
return changes
param_changes = []
for algo_idx in range(len(algos)):
init_params = copy.deepcopy(baseline.params)
_ = baseline.feedback(
rng_key,
batches[algo_idx],
algorithm_index=(0, algo_idx) if is_chunked else algo_idx)
param_changes.append(_change(init_params, baseline.params))
# Test that non-changing parameters correspond to encoders/decoders
# associated with the non-trained algorithms
unchanged = [[k for k in pc if pc[k] == 0] for pc in param_changes]
def _get_other_algos(algo_idx, modules):
return set([k for k in modules if '_construct_encoders_decoders' in k
and f'algo_{algo_idx}' not in k])
for algo_idx in range(len(algos)):
expected_unchanged = _get_other_algos(algo_idx, baseline.params.keys())
self.assertNotEmpty(expected_unchanged)
self.assertSetEqual(expected_unchanged, set(unchanged[algo_idx]))
if __name__ == '__main__':
absltest.main()
|