Spaces:
Running
Running
File size: 12,389 Bytes
85e3d20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""decoders utilities."""
import functools
from typing import Dict, Optional
import chex
from clrs._src import probing
from clrs._src import specs
import haiku as hk
import jax
import jax.numpy as jnp
_Array = chex.Array
_DataPoint = probing.DataPoint
_Location = specs.Location
_Spec = specs.Spec
_Stage = specs.Stage
_Type = specs.Type
def log_sinkhorn(x: _Array, steps: int, temperature: float, zero_diagonal: bool,
noise_rng_key: Optional[_Array]) -> _Array:
"""Sinkhorn operator in log space, to postprocess permutation pointer logits.
Args:
x: input of shape [..., n, n], a batch of square matrices.
steps: number of iterations.
temperature: temperature parameter (as temperature approaches zero, the
output approaches a permutation matrix).
zero_diagonal: whether to force the diagonal logits towards -inf.
noise_rng_key: key to add Gumbel noise.
Returns:
Elementwise logarithm of a doubly-stochastic matrix (a matrix with
non-negative elements whose rows and columns sum to 1).
"""
assert x.ndim >= 2
assert x.shape[-1] == x.shape[-2]
if noise_rng_key is not None:
# Add standard Gumbel noise (see https://arxiv.org/abs/1802.08665)
noise = -jnp.log(-jnp.log(jax.random.uniform(noise_rng_key,
x.shape) + 1e-12) + 1e-12)
x = x + noise
x /= temperature
if zero_diagonal:
x = x - 1e6 * jnp.eye(x.shape[-1])
for _ in range(steps):
x = jax.nn.log_softmax(x, axis=-1)
x = jax.nn.log_softmax(x, axis=-2)
return x
def construct_decoders(loc: str, t: str, hidden_dim: int, nb_dims: int,
name: str):
"""Constructs decoders."""
linear = functools.partial(hk.Linear, name=f"{name}_dec_linear")
if loc == _Location.NODE:
# Node decoders.
if t in [_Type.SCALAR, _Type.MASK, _Type.MASK_ONE]:
decoders = (linear(1),)
elif t == _Type.CATEGORICAL:
decoders = (linear(nb_dims),)
elif t in [_Type.POINTER, _Type.PERMUTATION_POINTER]:
decoders = (linear(hidden_dim), linear(hidden_dim), linear(hidden_dim),
linear(1))
else:
raise ValueError(f"Invalid Type {t}")
elif loc == _Location.EDGE:
# Edge decoders.
if t in [_Type.SCALAR, _Type.MASK, _Type.MASK_ONE]:
decoders = (linear(1), linear(1), linear(1))
elif t == _Type.CATEGORICAL:
decoders = (linear(nb_dims), linear(nb_dims), linear(nb_dims))
elif t == _Type.POINTER:
decoders = (linear(hidden_dim), linear(hidden_dim),
linear(hidden_dim), linear(hidden_dim), linear(1))
else:
raise ValueError(f"Invalid Type {t}")
elif loc == _Location.GRAPH:
# Graph decoders.
if t in [_Type.SCALAR, _Type.MASK, _Type.MASK_ONE]:
decoders = (linear(1), linear(1))
elif t == _Type.CATEGORICAL:
decoders = (linear(nb_dims), linear(nb_dims))
elif t == _Type.POINTER:
decoders = (linear(1), linear(1),
linear(1))
else:
raise ValueError(f"Invalid Type {t}")
else:
raise ValueError(f"Invalid Location {loc}")
return decoders
def construct_diff_decoders(name: str):
"""Constructs diff decoders."""
linear = functools.partial(hk.Linear, name=f"{name}_diffdec_linear")
decoders = {}
decoders[_Location.NODE] = linear(1)
decoders[_Location.EDGE] = (linear(1), linear(1), linear(1))
decoders[_Location.GRAPH] = (linear(1), linear(1))
return decoders
def postprocess(spec: _Spec, preds: Dict[str, _Array],
sinkhorn_temperature: float,
sinkhorn_steps: int,
hard: bool) -> Dict[str, _DataPoint]:
"""Postprocesses decoder output.
This is done on outputs in order to score performance, and on hints in
order to score them but also in order to feed them back to the model.
At scoring time, the postprocessing mode is "hard", logits will be
arg-maxed and masks will be thresholded. However, for the case of the hints
that are fed back in the model, the postprocessing can be hard or soft,
depending on whether we want to let gradients flow through them or not.
Args:
spec: The spec of the algorithm whose outputs/hints we are postprocessing.
preds: Output and/or hint predictions, as produced by decoders.
sinkhorn_temperature: Parameter for the sinkhorn operator on permutation
pointers.
sinkhorn_steps: Parameter for the sinkhorn operator on permutation
pointers.
hard: whether to do hard postprocessing, which involves argmax for
MASK_ONE, CATEGORICAL and POINTERS, thresholding for MASK, and stop
gradient through for SCALAR. If False, soft postprocessing will be used,
with softmax, sigmoid and gradients allowed.
Returns:
The postprocessed `preds`. In "soft" post-processing, POINTER types will
change to SOFT_POINTER, so encoders know they do not need to be
pre-processed before feeding them back in.
"""
result = {}
for name in preds.keys():
_, loc, t = spec[name]
new_t = t
data = preds[name]
if t == _Type.SCALAR:
if hard:
data = jax.lax.stop_gradient(data)
elif t == _Type.MASK:
if hard:
data = (data > 0.0) * 1.0
else:
data = jax.nn.sigmoid(data)
elif t in [_Type.MASK_ONE, _Type.CATEGORICAL]:
cat_size = data.shape[-1]
if hard:
best = jnp.argmax(data, -1)
data = hk.one_hot(best, cat_size)
else:
data = jax.nn.softmax(data, axis=-1)
elif t == _Type.POINTER:
if hard:
data = jnp.argmax(data, -1).astype(float)
else:
data = jax.nn.softmax(data, -1)
new_t = _Type.SOFT_POINTER
elif t == _Type.PERMUTATION_POINTER:
# Convert the matrix of logits to a doubly stochastic matrix.
data = log_sinkhorn(
x=data,
steps=sinkhorn_steps,
temperature=sinkhorn_temperature,
zero_diagonal=True,
noise_rng_key=None)
data = jnp.exp(data)
if hard:
data = jax.nn.one_hot(jnp.argmax(data, axis=-1), data.shape[-1])
else:
raise ValueError("Invalid type")
result[name] = probing.DataPoint(
name=name, location=loc, type_=new_t, data=data)
return result
def decode_fts(
decoders,
spec: _Spec,
h_t: _Array,
adj_mat: _Array,
edge_fts: _Array,
graph_fts: _Array,
inf_bias: bool,
inf_bias_edge: bool,
repred: bool,
):
"""Decodes node, edge and graph features."""
output_preds = {}
hint_preds = {}
for name in decoders:
decoder = decoders[name]
stage, loc, t = spec[name]
if loc == _Location.NODE:
preds = _decode_node_fts(decoder, t, h_t, edge_fts, adj_mat,
inf_bias, repred)
elif loc == _Location.EDGE:
preds = _decode_edge_fts(decoder, t, h_t, edge_fts, adj_mat,
inf_bias_edge)
elif loc == _Location.GRAPH:
preds = _decode_graph_fts(decoder, t, h_t, graph_fts)
else:
raise ValueError("Invalid output type")
if stage == _Stage.OUTPUT:
output_preds[name] = preds
elif stage == _Stage.HINT:
hint_preds[name] = preds
else:
raise ValueError(f"Found unexpected decoder {name}")
return hint_preds, output_preds
def _decode_node_fts(decoders, t: str, h_t: _Array, edge_fts: _Array,
adj_mat: _Array, inf_bias: bool, repred: bool) -> _Array:
"""Decodes node features."""
if t in [_Type.SCALAR, _Type.MASK, _Type.MASK_ONE]:
preds = jnp.squeeze(decoders[0](h_t), -1)
elif t == _Type.CATEGORICAL:
preds = decoders[0](h_t)
elif t in [_Type.POINTER, _Type.PERMUTATION_POINTER]:
p_1 = decoders[0](h_t)
p_2 = decoders[1](h_t)
p_3 = decoders[2](edge_fts)
p_e = jnp.expand_dims(p_2, -2) + p_3
p_m = jnp.maximum(jnp.expand_dims(p_1, -2),
jnp.transpose(p_e, (0, 2, 1, 3)))
preds = jnp.squeeze(decoders[3](p_m), -1)
if inf_bias:
per_batch_min = jnp.min(preds, axis=range(1, preds.ndim), keepdims=True)
preds = jnp.where(adj_mat > 0.5,
preds,
jnp.minimum(-1.0, per_batch_min - 1.0))
if t == _Type.PERMUTATION_POINTER:
if repred: # testing or validation, no Gumbel noise
preds = log_sinkhorn(
x=preds, steps=10, temperature=0.1,
zero_diagonal=True, noise_rng_key=None)
else: # training, add Gumbel noise
preds = log_sinkhorn(
x=preds, steps=10, temperature=0.1,
zero_diagonal=True, noise_rng_key=hk.next_rng_key())
else:
raise ValueError("Invalid output type")
return preds
def _decode_edge_fts(decoders, t: str, h_t: _Array, edge_fts: _Array,
adj_mat: _Array, inf_bias_edge: bool) -> _Array:
"""Decodes edge features."""
pred_1 = decoders[0](h_t)
pred_2 = decoders[1](h_t)
pred_e = decoders[2](edge_fts)
pred = (jnp.expand_dims(pred_1, -2) + jnp.expand_dims(pred_2, -3) + pred_e)
if t in [_Type.SCALAR, _Type.MASK, _Type.MASK_ONE]:
preds = jnp.squeeze(pred, -1)
elif t == _Type.CATEGORICAL:
preds = pred
elif t == _Type.POINTER:
pred_2 = decoders[3](h_t)
p_m = jnp.maximum(jnp.expand_dims(pred, -2),
jnp.expand_dims(
jnp.expand_dims(pred_2, -3), -3))
preds = jnp.squeeze(decoders[4](p_m), -1)
else:
raise ValueError("Invalid output type")
if inf_bias_edge and t in [_Type.MASK, _Type.MASK_ONE]:
per_batch_min = jnp.min(preds, axis=range(1, preds.ndim), keepdims=True)
preds = jnp.where(adj_mat > 0.5,
preds,
jnp.minimum(-1.0, per_batch_min - 1.0))
return preds
def _decode_graph_fts(decoders, t: str, h_t: _Array,
graph_fts: _Array) -> _Array:
"""Decodes graph features."""
gr_emb = jnp.max(h_t, axis=-2)
pred_n = decoders[0](gr_emb)
pred_g = decoders[1](graph_fts)
pred = pred_n + pred_g
if t in [_Type.SCALAR, _Type.MASK, _Type.MASK_ONE]:
preds = jnp.squeeze(pred, -1)
elif t == _Type.CATEGORICAL:
preds = pred
elif t == _Type.POINTER:
pred_2 = decoders[2](h_t)
ptr_p = jnp.expand_dims(pred, 1) + jnp.transpose(pred_2, (0, 2, 1))
preds = jnp.squeeze(ptr_p, 1)
else:
raise ValueError("Invalid output type")
return preds
def maybe_decode_diffs(
diff_decoders,
h_t: _Array,
edge_fts: _Array,
graph_fts: _Array,
decode_diffs: bool,
) -> Optional[Dict[str, _Array]]:
"""Optionally decodes node, edge and graph diffs."""
if decode_diffs:
preds = {}
node = _Location.NODE
edge = _Location.EDGE
graph = _Location.GRAPH
preds[node] = _decode_node_diffs(diff_decoders[node], h_t)
preds[edge] = _decode_edge_diffs(diff_decoders[edge], h_t, edge_fts)
preds[graph] = _decode_graph_diffs(diff_decoders[graph], h_t, graph_fts)
else:
preds = None
return preds
def _decode_node_diffs(decoders, h_t: _Array) -> _Array:
"""Decodes node diffs."""
return jnp.squeeze(decoders(h_t), -1)
def _decode_edge_diffs(decoders, h_t: _Array, edge_fts: _Array) -> _Array:
"""Decodes edge diffs."""
e_pred_1 = decoders[0](h_t)
e_pred_2 = decoders[1](h_t)
e_pred_e = decoders[2](edge_fts)
preds = jnp.squeeze(
jnp.expand_dims(e_pred_1, -1) + jnp.expand_dims(e_pred_2, -2) + e_pred_e,
-1,
)
return preds
def _decode_graph_diffs(decoders, h_t: _Array, graph_fts: _Array) -> _Array:
"""Decodes graph diffs."""
gr_emb = jnp.max(h_t, axis=-2)
g_pred_n = decoders[0](gr_emb)
g_pred_g = decoders[1](graph_fts)
preds = jnp.squeeze(g_pred_n + g_pred_g, -1)
return preds
|