File size: 12,389 Bytes
85e3d20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""decoders utilities."""

import functools
from typing import Dict, Optional

import chex
from clrs._src import probing
from clrs._src import specs
import haiku as hk
import jax
import jax.numpy as jnp

_Array = chex.Array
_DataPoint = probing.DataPoint
_Location = specs.Location
_Spec = specs.Spec
_Stage = specs.Stage
_Type = specs.Type


def log_sinkhorn(x: _Array, steps: int, temperature: float, zero_diagonal: bool,
                 noise_rng_key: Optional[_Array]) -> _Array:
  """Sinkhorn operator in log space, to postprocess permutation pointer logits.

  Args:
    x: input of shape [..., n, n], a batch of square matrices.
    steps: number of iterations.
    temperature: temperature parameter (as temperature approaches zero, the
      output approaches a permutation matrix).
    zero_diagonal: whether to force the diagonal logits towards -inf.
    noise_rng_key: key to add Gumbel noise.

  Returns:
    Elementwise logarithm of a doubly-stochastic matrix (a matrix with
    non-negative elements whose rows and columns sum to 1).
  """
  assert x.ndim >= 2
  assert x.shape[-1] == x.shape[-2]
  if noise_rng_key is not None:
    # Add standard Gumbel noise (see https://arxiv.org/abs/1802.08665)
    noise = -jnp.log(-jnp.log(jax.random.uniform(noise_rng_key,
                                                 x.shape) + 1e-12) + 1e-12)
    x = x + noise
  x /= temperature
  if zero_diagonal:
    x = x - 1e6 * jnp.eye(x.shape[-1])
  for _ in range(steps):
    x = jax.nn.log_softmax(x, axis=-1)
    x = jax.nn.log_softmax(x, axis=-2)
  return x


def construct_decoders(loc: str, t: str, hidden_dim: int, nb_dims: int,
                       name: str):
  """Constructs decoders."""
  linear = functools.partial(hk.Linear, name=f"{name}_dec_linear")
  if loc == _Location.NODE:
    # Node decoders.
    if t in [_Type.SCALAR, _Type.MASK, _Type.MASK_ONE]:
      decoders = (linear(1),)
    elif t == _Type.CATEGORICAL:
      decoders = (linear(nb_dims),)
    elif t in [_Type.POINTER, _Type.PERMUTATION_POINTER]:
      decoders = (linear(hidden_dim), linear(hidden_dim), linear(hidden_dim),
                  linear(1))
    else:
      raise ValueError(f"Invalid Type {t}")

  elif loc == _Location.EDGE:
    # Edge decoders.
    if t in [_Type.SCALAR, _Type.MASK, _Type.MASK_ONE]:
      decoders = (linear(1), linear(1), linear(1))
    elif t == _Type.CATEGORICAL:
      decoders = (linear(nb_dims), linear(nb_dims), linear(nb_dims))
    elif t == _Type.POINTER:
      decoders = (linear(hidden_dim), linear(hidden_dim),
                  linear(hidden_dim), linear(hidden_dim), linear(1))
    else:
      raise ValueError(f"Invalid Type {t}")

  elif loc == _Location.GRAPH:
    # Graph decoders.
    if t in [_Type.SCALAR, _Type.MASK, _Type.MASK_ONE]:
      decoders = (linear(1), linear(1))
    elif t == _Type.CATEGORICAL:
      decoders = (linear(nb_dims), linear(nb_dims))
    elif t == _Type.POINTER:
      decoders = (linear(1), linear(1),
                  linear(1))
    else:
      raise ValueError(f"Invalid Type {t}")

  else:
    raise ValueError(f"Invalid Location {loc}")

  return decoders


def construct_diff_decoders(name: str):
  """Constructs diff decoders."""
  linear = functools.partial(hk.Linear, name=f"{name}_diffdec_linear")
  decoders = {}
  decoders[_Location.NODE] = linear(1)
  decoders[_Location.EDGE] = (linear(1), linear(1), linear(1))
  decoders[_Location.GRAPH] = (linear(1), linear(1))

  return decoders


def postprocess(spec: _Spec, preds: Dict[str, _Array],
                sinkhorn_temperature: float,
                sinkhorn_steps: int,
                hard: bool) -> Dict[str, _DataPoint]:
  """Postprocesses decoder output.

  This is done on outputs in order to score performance, and on hints in
  order to score them but also in order to feed them back to the model.
  At scoring time, the postprocessing mode is "hard", logits will be
  arg-maxed and masks will be thresholded. However, for the case of the hints
  that are fed back in the model, the postprocessing can be hard or soft,
  depending on whether we want to let gradients flow through them or not.

  Args:
    spec: The spec of the algorithm whose outputs/hints we are postprocessing.
    preds: Output and/or hint predictions, as produced by decoders.
    sinkhorn_temperature: Parameter for the sinkhorn operator on permutation
      pointers.
    sinkhorn_steps: Parameter for the sinkhorn operator on permutation
      pointers.
    hard: whether to do hard postprocessing, which involves argmax for
      MASK_ONE, CATEGORICAL and POINTERS, thresholding for MASK, and stop
      gradient through for SCALAR. If False, soft postprocessing will be used,
      with softmax, sigmoid and gradients allowed.
  Returns:
    The postprocessed `preds`. In "soft" post-processing, POINTER types will
    change to SOFT_POINTER, so encoders know they do not need to be
    pre-processed before feeding them back in.
  """
  result = {}
  for name in preds.keys():
    _, loc, t = spec[name]
    new_t = t
    data = preds[name]
    if t == _Type.SCALAR:
      if hard:
        data = jax.lax.stop_gradient(data)
    elif t == _Type.MASK:
      if hard:
        data = (data > 0.0) * 1.0
      else:
        data = jax.nn.sigmoid(data)
    elif t in [_Type.MASK_ONE, _Type.CATEGORICAL]:
      cat_size = data.shape[-1]
      if hard:
        best = jnp.argmax(data, -1)
        data = hk.one_hot(best, cat_size)
      else:
        data = jax.nn.softmax(data, axis=-1)
    elif t == _Type.POINTER:
      if hard:
        data = jnp.argmax(data, -1).astype(float)
      else:
        data = jax.nn.softmax(data, -1)
        new_t = _Type.SOFT_POINTER
    elif t == _Type.PERMUTATION_POINTER:
      # Convert the matrix of logits to a doubly stochastic matrix.
      data = log_sinkhorn(
          x=data,
          steps=sinkhorn_steps,
          temperature=sinkhorn_temperature,
          zero_diagonal=True,
          noise_rng_key=None)
      data = jnp.exp(data)
      if hard:
        data = jax.nn.one_hot(jnp.argmax(data, axis=-1), data.shape[-1])
    else:
      raise ValueError("Invalid type")
    result[name] = probing.DataPoint(
        name=name, location=loc, type_=new_t, data=data)

  return result


def decode_fts(
    decoders,
    spec: _Spec,
    h_t: _Array,
    adj_mat: _Array,
    edge_fts: _Array,
    graph_fts: _Array,
    inf_bias: bool,
    inf_bias_edge: bool,
    repred: bool,
):
  """Decodes node, edge and graph features."""
  output_preds = {}
  hint_preds = {}

  for name in decoders:
    decoder = decoders[name]
    stage, loc, t = spec[name]

    if loc == _Location.NODE:
      preds = _decode_node_fts(decoder, t, h_t, edge_fts, adj_mat,
                               inf_bias, repred)
    elif loc == _Location.EDGE:
      preds = _decode_edge_fts(decoder, t, h_t, edge_fts, adj_mat,
                               inf_bias_edge)
    elif loc == _Location.GRAPH:
      preds = _decode_graph_fts(decoder, t, h_t, graph_fts)
    else:
      raise ValueError("Invalid output type")

    if stage == _Stage.OUTPUT:
      output_preds[name] = preds
    elif stage == _Stage.HINT:
      hint_preds[name] = preds
    else:
      raise ValueError(f"Found unexpected decoder {name}")

  return hint_preds, output_preds


def _decode_node_fts(decoders, t: str, h_t: _Array, edge_fts: _Array,
                     adj_mat: _Array, inf_bias: bool, repred: bool) -> _Array:
  """Decodes node features."""

  if t in [_Type.SCALAR, _Type.MASK, _Type.MASK_ONE]:
    preds = jnp.squeeze(decoders[0](h_t), -1)
  elif t == _Type.CATEGORICAL:
    preds = decoders[0](h_t)
  elif t in [_Type.POINTER, _Type.PERMUTATION_POINTER]:
    p_1 = decoders[0](h_t)
    p_2 = decoders[1](h_t)
    p_3 = decoders[2](edge_fts)

    p_e = jnp.expand_dims(p_2, -2) + p_3
    p_m = jnp.maximum(jnp.expand_dims(p_1, -2),
                      jnp.transpose(p_e, (0, 2, 1, 3)))

    preds = jnp.squeeze(decoders[3](p_m), -1)

    if inf_bias:
      per_batch_min = jnp.min(preds, axis=range(1, preds.ndim), keepdims=True)
      preds = jnp.where(adj_mat > 0.5,
                        preds,
                        jnp.minimum(-1.0, per_batch_min - 1.0))
    if t == _Type.PERMUTATION_POINTER:
      if repred:  # testing or validation, no Gumbel noise
        preds = log_sinkhorn(
            x=preds, steps=10, temperature=0.1,
            zero_diagonal=True, noise_rng_key=None)
      else:  # training, add Gumbel noise
        preds = log_sinkhorn(
            x=preds, steps=10, temperature=0.1,
            zero_diagonal=True, noise_rng_key=hk.next_rng_key())
  else:
    raise ValueError("Invalid output type")

  return preds


def _decode_edge_fts(decoders, t: str, h_t: _Array, edge_fts: _Array,
                     adj_mat: _Array, inf_bias_edge: bool) -> _Array:
  """Decodes edge features."""

  pred_1 = decoders[0](h_t)
  pred_2 = decoders[1](h_t)
  pred_e = decoders[2](edge_fts)
  pred = (jnp.expand_dims(pred_1, -2) + jnp.expand_dims(pred_2, -3) + pred_e)
  if t in [_Type.SCALAR, _Type.MASK, _Type.MASK_ONE]:
    preds = jnp.squeeze(pred, -1)
  elif t == _Type.CATEGORICAL:
    preds = pred
  elif t == _Type.POINTER:
    pred_2 = decoders[3](h_t)

    p_m = jnp.maximum(jnp.expand_dims(pred, -2),
                      jnp.expand_dims(
                          jnp.expand_dims(pred_2, -3), -3))

    preds = jnp.squeeze(decoders[4](p_m), -1)
  else:
    raise ValueError("Invalid output type")
  if inf_bias_edge and t in [_Type.MASK, _Type.MASK_ONE]:
    per_batch_min = jnp.min(preds, axis=range(1, preds.ndim), keepdims=True)
    preds = jnp.where(adj_mat > 0.5,
                      preds,
                      jnp.minimum(-1.0, per_batch_min - 1.0))

  return preds


def _decode_graph_fts(decoders, t: str, h_t: _Array,
                      graph_fts: _Array) -> _Array:
  """Decodes graph features."""

  gr_emb = jnp.max(h_t, axis=-2)
  pred_n = decoders[0](gr_emb)
  pred_g = decoders[1](graph_fts)
  pred = pred_n + pred_g
  if t in [_Type.SCALAR, _Type.MASK, _Type.MASK_ONE]:
    preds = jnp.squeeze(pred, -1)
  elif t == _Type.CATEGORICAL:
    preds = pred
  elif t == _Type.POINTER:
    pred_2 = decoders[2](h_t)
    ptr_p = jnp.expand_dims(pred, 1) + jnp.transpose(pred_2, (0, 2, 1))
    preds = jnp.squeeze(ptr_p, 1)
  else:
    raise ValueError("Invalid output type")

  return preds


def maybe_decode_diffs(
    diff_decoders,
    h_t: _Array,
    edge_fts: _Array,
    graph_fts: _Array,
    decode_diffs: bool,
) -> Optional[Dict[str, _Array]]:
  """Optionally decodes node, edge and graph diffs."""

  if decode_diffs:
    preds = {}
    node = _Location.NODE
    edge = _Location.EDGE
    graph = _Location.GRAPH
    preds[node] = _decode_node_diffs(diff_decoders[node], h_t)
    preds[edge] = _decode_edge_diffs(diff_decoders[edge], h_t, edge_fts)
    preds[graph] = _decode_graph_diffs(diff_decoders[graph], h_t, graph_fts)

  else:
    preds = None

  return preds


def _decode_node_diffs(decoders, h_t: _Array) -> _Array:
  """Decodes node diffs."""
  return jnp.squeeze(decoders(h_t), -1)


def _decode_edge_diffs(decoders, h_t: _Array, edge_fts: _Array) -> _Array:
  """Decodes edge diffs."""

  e_pred_1 = decoders[0](h_t)
  e_pred_2 = decoders[1](h_t)
  e_pred_e = decoders[2](edge_fts)
  preds = jnp.squeeze(
      jnp.expand_dims(e_pred_1, -1) + jnp.expand_dims(e_pred_2, -2) + e_pred_e,
      -1,
  )

  return preds


def _decode_graph_diffs(decoders, h_t: _Array, graph_fts: _Array) -> _Array:
  """Decodes graph diffs."""

  gr_emb = jnp.max(h_t, axis=-2)
  g_pred_n = decoders[0](gr_emb)
  g_pred_g = decoders[1](graph_fts)
  preds = jnp.squeeze(g_pred_n + g_pred_g, -1)

  return preds