Spaces:
Running
Running
File size: 22,498 Bytes
85e3d20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
# Copyright 2022 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Run training of one or more algorithmic tasks from CLRS."""
import os
# disable logging until training starts
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import functools
import os
import shutil
from typing import Any, Dict, List
from absl import app
from absl import flags
from absl import logging
# disable logging until training starts
logging.set_verbosity(logging.ERROR)
import clrs
import jax
import numpy as np
import requests
import tensorflow as tf
from baselines import BaselineModel, BaselineModelChunked
import pickle
import copy
flags.DEFINE_list('algorithms', ['floyd_warshall'], 'Which algorithms to run.')
flags.DEFINE_list('train_lengths', ['4', '7', '11', '13', '16'],
'Which training sizes to use. A size of -1 means '
'use the benchmark dataset.')
flags.DEFINE_integer('length_needle', -8,
'Length of needle for training and validation '
'(not testing) in string matching algorithms. '
'A negative value randomizes the length for each sample '
'between 1 and the opposite of the value. '
'A value of 0 means use always 1/4 of the length of '
'the haystack (the default sampler behavior).')
flags.DEFINE_integer('seed', 42, 'Random seed to set')
flags.DEFINE_boolean('random_pos', True,
'Randomize the pos input common to all algos.')
flags.DEFINE_boolean('enforce_permutations', True,
'Whether to enforce permutation-type node pointers.')
flags.DEFINE_boolean('enforce_pred_as_input', True,
'Whether to change pred_h hints into pred inputs.')
flags.DEFINE_integer('batch_size', 32, 'Batch size used for training.')
flags.DEFINE_boolean('chunked_training', False,
'Whether to use chunking for training.')
flags.DEFINE_integer('chunk_length', 16,
'Time chunk length used for training (if '
'`chunked_training` is True.')
flags.DEFINE_integer('train_steps', 500, 'Number of training iterations.')
flags.DEFINE_integer('eval_every', 50, 'Evaluation frequency (in steps).')
flags.DEFINE_integer('test_every', 500, 'Evaluation frequency (in steps).')
flags.DEFINE_integer('log_every', 50, 'Logging frequency (in steps).')
flags.DEFINE_integer('hidden_size', 128,
'Number of hidden units of the model.')
flags.DEFINE_integer('nb_heads', 1, 'Number of heads for GAT processors')
flags.DEFINE_integer('nb_msg_passing_steps', 1,
'Number of message passing steps to run per hint.')
flags.DEFINE_float('learning_rate', 0.001, 'Learning rate to use.')
flags.DEFINE_float('grad_clip_max_norm', 1.0,
'Gradient clipping by norm. 0.0 disables grad clipping')
flags.DEFINE_float('dropout_prob', 0.0, 'Dropout rate to use.')
flags.DEFINE_float('hint_teacher_forcing', 0.0,
'Probability that ground-truth teacher hints are encoded '
'during training instead of predicted hints. Only '
'pertinent in encoded_decoded modes.')
flags.DEFINE_enum('hint_mode', 'encoded_decoded',
['encoded_decoded', 'decoded_only', 'none'],
'How should hints be used? Note, each mode defines a '
'separate task, with various difficulties. `encoded_decoded` '
'requires the model to explicitly materialise hint sequences '
'and therefore is hardest, but also most aligned to the '
'underlying algorithmic rule. Hence, `encoded_decoded` '
'should be treated as the default mode for our benchmark. '
'In `decoded_only`, hints are only used for defining '
'reconstruction losses. Often, this will perform well, but '
'note that we currently do not make any efforts to '
'counterbalance the various hint losses. Hence, for certain '
'tasks, the best performance will now be achievable with no '
'hint usage at all (`none`).')
flags.DEFINE_enum('hint_repred_mode', 'soft', ['soft', 'hard', 'hard_on_eval'],
'How to process predicted hints when fed back as inputs.'
'In soft mode, we use softmaxes for categoricals, pointers '
'and mask_one, and sigmoids for masks. '
'In hard mode, we use argmax instead of softmax, and hard '
'thresholding of masks. '
'In hard_on_eval mode, soft mode is '
'used for training and hard mode is used for evaluation.')
flags.DEFINE_boolean('use_ln', True,
'Whether to use layer normalisation in the processor.')
flags.DEFINE_boolean('use_lstm', False,
'Whether to insert an LSTM after message passing.')
flags.DEFINE_integer('nb_triplet_fts', 8,
'How many triplet features to compute?')
flags.DEFINE_enum('encoder_init', 'xavier_on_scalars',
['default', 'xavier_on_scalars'],
'Initialiser to use for the encoders.')
flags.DEFINE_enum('processor_type', 'triplet_gmpnn',
['deepsets', 'mpnn', 'pgn', 'pgn_mask',
'triplet_mpnn', 'triplet_pgn', 'triplet_pgn_mask',
'gat', 'gatv2', 'gat_full', 'gatv2_full',
'gpgn', 'gpgn_mask', 'gmpnn',
'triplet_gpgn', 'triplet_gpgn_mask', 'triplet_gmpnn'],
'Processor type to use as the network P.')
flags.DEFINE_string('checkpoint_path', './checkpoints',
'Path in which checkpoints are saved.')
flags.DEFINE_string('dataset_path', '/tmp/CLRS30',
'Path in which dataset is stored.')
flags.DEFINE_boolean('freeze_processor', False,
'Whether to freeze the processor of the model.')
FLAGS = flags.FLAGS
PRED_AS_INPUT_ALGOS = [
'binary_search',
'minimum',
'find_maximum_subarray',
'find_maximum_subarray_kadane',
'matrix_chain_order',
'lcs_length',
'optimal_bst',
'activity_selector',
'task_scheduling',
'naive_string_matcher',
'kmp_matcher',
'jarvis_march']
def unpack(v):
try:
return v.item() # DeviceArray
except (AttributeError, ValueError):
return v
def _iterate_sampler(sampler, batch_size):
while True:
yield sampler.next(batch_size)
def _maybe_download_dataset(dataset_path):
"""Download CLRS30 dataset if needed."""
dataset_folder = os.path.join(dataset_path, clrs.get_clrs_folder())
if os.path.isdir(dataset_folder):
logging.info('Dataset found at %s. Skipping download.', dataset_folder)
return dataset_folder
logging.info('Dataset not found in %s. Downloading...', dataset_folder)
clrs_url = clrs.get_dataset_gcp_url()
request = requests.get(clrs_url, allow_redirects=True)
clrs_file = os.path.join(dataset_path, os.path.basename(clrs_url))
os.makedirs(dataset_folder)
open(clrs_file, 'wb').write(request.content)
shutil.unpack_archive(clrs_file, extract_dir=dataset_folder)
os.remove(clrs_file)
return dataset_folder
def make_sampler(length: int,
rng: Any,
algorithm: str,
split: str,
batch_size: int,
multiplier: int,
randomize_pos: bool,
enforce_pred_as_input: bool,
enforce_permutations: bool,
chunked: bool,
chunk_length: int,
sampler_kwargs: Dict[str, Any]):
"""Create a sampler with given options.
Args:
length: Size of samples (i.e., number of nodes in the graph).
A length of -1 will mean that the benchmark
dataset (for the given split) is used. Positive sizes will instantiate
samplers of the corresponding size.
rng: Numpy random state.
algorithm: The name of the algorithm to sample from.
split: 'train', 'val' or 'test'.
batch_size: Samples per batch.
multiplier: Integer multiplier for the number of samples in the dataset,
only used for positive sizes. Negative multiplier means infinite samples.
randomize_pos: Whether to randomize the `pos` input.
enforce_pred_as_input: Whether to convert fixed pred_h hints to inputs.
enforce_permutations: Whether to enforce permutation pointers.
chunked: Whether to chunk the dataset.
chunk_length: Unroll length of chunks, if `chunked` is True.
sampler_kwargs: Extra args passed to the sampler.
Returns:
A sampler (iterator), the number of samples in the iterator (negative
if infinite samples), and the spec.
"""
if length < 0: # load from file
dataset_folder = _maybe_download_dataset(FLAGS.dataset_path)
sampler, num_samples, spec = clrs.create_dataset(folder=dataset_folder,
algorithm=algorithm,
batch_size=batch_size,
split=split)
sampler = sampler.as_numpy_iterator()
else:
num_samples = clrs.CLRS30[split]['num_samples'] * multiplier
sampler, spec = clrs.build_sampler(
algorithm,
seed=rng.randint(2**32),
num_samples=num_samples,
length=length,
**sampler_kwargs,
)
sampler = _iterate_sampler(sampler, batch_size)
if randomize_pos:
sampler = clrs.process_random_pos(sampler, rng)
if enforce_pred_as_input and algorithm in PRED_AS_INPUT_ALGOS:
spec, sampler = clrs.process_pred_as_input(spec, sampler)
spec, sampler = clrs.process_permutations(spec, sampler, enforce_permutations)
if chunked:
sampler = clrs.chunkify(sampler, chunk_length)
return sampler, num_samples, spec
def make_multi_sampler(sizes, rng, **kwargs):
"""Create a sampler with cycling sample sizes."""
ss = []
tot_samples = 0
for length in sizes:
sampler, num_samples, spec = make_sampler(length, rng, **kwargs)
ss.append(sampler)
tot_samples += num_samples
def cycle_samplers():
while True:
for s in ss:
yield next(s)
return cycle_samplers(), tot_samples, spec
def _concat(dps, axis):
return jax.tree_util.tree_map(lambda *x: np.concatenate(x, axis), *dps)
def collect_and_eval(sampler, predict_fn, sample_count, rng_key, extras):
"""Collect batches of output and hint preds and evaluate them."""
processed_samples = 0
preds = []
outputs = []
while processed_samples < sample_count:
feedback = next(sampler)
batch_size = feedback.outputs[0].data.shape[0]
outputs.append(feedback.outputs)
new_rng_key, rng_key = jax.random.split(rng_key)
cur_preds, _ = predict_fn(new_rng_key, feedback.features)
preds.append(cur_preds)
processed_samples += batch_size
outputs = _concat(outputs, axis=0)
preds = _concat(preds, axis=0)
out = clrs.evaluate(outputs, preds)
if extras:
out.update(extras)
return {k: unpack(v) for k, v in out.items()}
def create_samplers(rng, train_lengths: List[int]):
"""Create all the samplers."""
train_samplers = []
val_samplers = []
val_sample_counts = []
test_samplers = []
test_sample_counts = []
spec_list = []
for algo_idx, algorithm in enumerate(FLAGS.algorithms):
# Make full dataset pipeline run on CPU (including prefetching).
with tf.device('/cpu:0'):
if algorithm in ['naive_string_matcher', 'kmp_matcher']:
# Fixed haystack + needle; variability will be in needle
# Still, for chunked training, we maintain as many samplers
# as train lengths, since, for each length there is a separate state,
# and we must keep the 1:1 relationship between states and samplers.
max_length = max(train_lengths)
if max_length > 0: # if < 0, we are using the benchmark data
max_length = (max_length * 5) // 4
train_lengths = [max_length]
if FLAGS.chunked_training:
train_lengths = train_lengths * len(train_lengths)
logging.info('Creating samplers for algo %s', algorithm)
p = tuple([0.1 + 0.1 * i for i in range(9)])
if p and algorithm in ['articulation_points', 'bridges',
'mst_kruskal', 'bipartite_matching']:
# Choose a lower connection probability for the above algorithms,
# otherwise trajectories are very long
p = tuple(np.array(p) / 2)
length_needle = FLAGS.length_needle
sampler_kwargs = dict(p=p, length_needle=length_needle)
if length_needle == 0:
sampler_kwargs.pop('length_needle')
common_sampler_args = dict(
algorithm=FLAGS.algorithms[algo_idx],
rng=rng,
enforce_pred_as_input=FLAGS.enforce_pred_as_input,
enforce_permutations=FLAGS.enforce_permutations,
chunk_length=FLAGS.chunk_length,
)
train_args = dict(sizes=train_lengths,
split='train',
batch_size=FLAGS.batch_size,
multiplier=-1,
randomize_pos=FLAGS.random_pos,
chunked=FLAGS.chunked_training,
sampler_kwargs=sampler_kwargs,
**common_sampler_args)
train_sampler, _, spec = make_multi_sampler(**train_args)
mult = clrs.CLRS_30_ALGS_SETTINGS[algorithm]['num_samples_multiplier']
val_args = dict(sizes=[np.amax(train_lengths)],
split='val',
batch_size=32,
multiplier=2 * mult,
randomize_pos=FLAGS.random_pos,
chunked=False,
sampler_kwargs=sampler_kwargs,
**common_sampler_args)
val_sampler, val_samples, spec = make_multi_sampler(**val_args)
test_args = dict(sizes=[-1],
split='test',
batch_size=32,
multiplier=2 * mult,
randomize_pos=False,
chunked=False,
sampler_kwargs={},
**common_sampler_args)
test_sampler, test_samples, spec = make_multi_sampler(**test_args)
spec_list.append(spec)
train_samplers.append(train_sampler)
val_samplers.append(val_sampler)
val_sample_counts.append(val_samples)
test_samplers.append(test_sampler)
test_sample_counts.append(test_samples)
return (train_samplers,
val_samplers, val_sample_counts,
test_samplers, test_sample_counts,
spec_list)
def main(unused_argv):
if FLAGS.hint_mode == 'encoded_decoded':
encode_hints = True
decode_hints = True
elif FLAGS.hint_mode == 'decoded_only':
encode_hints = False
decode_hints = True
elif FLAGS.hint_mode == 'none':
encode_hints = False
decode_hints = False
else:
raise ValueError('Hint mode not in {encoded_decoded, decoded_only, none}.')
train_lengths = [int(x) for x in FLAGS.train_lengths]
rng = np.random.RandomState(FLAGS.seed)
rng_key = jax.random.PRNGKey(rng.randint(2**32))
# Create samplers
(train_samplers,
val_samplers, val_sample_counts,
test_samplers, test_sample_counts,
spec_list) = create_samplers(rng, train_lengths)
processor_factory = clrs.get_processor_factory(
FLAGS.processor_type,
use_ln=FLAGS.use_ln,
nb_triplet_fts=FLAGS.nb_triplet_fts,
nb_heads=FLAGS.nb_heads
)
model_params = dict(
processor_factory=processor_factory,
hidden_dim=FLAGS.hidden_size,
encode_hints=encode_hints,
decode_hints=decode_hints,
encoder_init=FLAGS.encoder_init,
use_lstm=FLAGS.use_lstm,
learning_rate=FLAGS.learning_rate,
grad_clip_max_norm=FLAGS.grad_clip_max_norm,
checkpoint_path=FLAGS.checkpoint_path,
freeze_processor=FLAGS.freeze_processor,
dropout_prob=FLAGS.dropout_prob,
hint_teacher_forcing=FLAGS.hint_teacher_forcing,
hint_repred_mode=FLAGS.hint_repred_mode,
nb_msg_passing_steps=FLAGS.nb_msg_passing_steps,
)
# save spec_list and model_params; do not change or delete!!
if not os.path.exists(FLAGS.checkpoint_path):
os.makedirs(FLAGS.checkpoint_path)
with open(os.path.join(FLAGS.checkpoint_path, 'spec_list.pkl'), 'wb') as f:
pickle.dump(spec_list, f)
model_params_save = copy.deepcopy(model_params)
model_params_save["processor_factory"] = (FLAGS.processor_type, FLAGS.use_ln, FLAGS.nb_triplet_fts, FLAGS.nb_heads)
with open(os.path.join(FLAGS.checkpoint_path, 'model_params.pkl'), 'wb') as f:
pickle.dump(model_params_save, f)
eval_model = BaselineModel(
spec=spec_list,
dummy_trajectory=[next(t) for t in val_samplers],
**model_params
)
if FLAGS.chunked_training:
train_model = BaselineModelChunked(
spec=spec_list,
dummy_trajectory=[next(t) for t in train_samplers],
**model_params
)
else:
train_model = eval_model
# Training loop.
best_score = -1.0
current_train_items = [0] * len(FLAGS.algorithms)
step = 0
next_eval = 0
# Make sure scores improve on first step, but not overcome best score
# until all algos have had at least one evaluation.
val_scores = [-99999.9] * len(FLAGS.algorithms)
length_idx = 0
while step < FLAGS.train_steps:
feedback_list = [next(t) for t in train_samplers]
# Initialize model.
if step == 0:
all_features = [f.features for f in feedback_list]
if FLAGS.chunked_training:
# We need to initialize the model with samples of all lengths for
# all algorithms. Also, we need to make sure that the order of these
# sample sizes is the same as the order of the actual training sizes.
all_length_features = [all_features] + [
[next(t).features for t in train_samplers]
for _ in range(len(train_lengths))]
train_model.init(all_length_features[:-1], FLAGS.seed + 1)
else:
train_model.init(all_features, FLAGS.seed + 1)
# Training step.
# enable logging now that we have initialized the model
logging.set_verbosity(logging.INFO)
for algo_idx in range(len(train_samplers)):
feedback = feedback_list[algo_idx]
rng_key, new_rng_key = jax.random.split(rng_key)
if FLAGS.chunked_training:
# In chunked training, we must indicate which training length we are
# using, so the model uses the correct state.
length_and_algo_idx = (length_idx, algo_idx)
else:
# In non-chunked training, all training lengths can be treated equally,
# since there is no state to maintain between batches.
length_and_algo_idx = algo_idx
cur_loss = train_model.feedback(rng_key, feedback, length_and_algo_idx)
rng_key = new_rng_key
if FLAGS.chunked_training:
examples_in_chunk = np.sum(feedback.features.is_last).item()
else:
examples_in_chunk = len(feedback.features.lengths)
current_train_items[algo_idx] += examples_in_chunk
if step % FLAGS.log_every == 0:
logging.info('Algo %s step %i current loss %f, current_train_items %i.',
FLAGS.algorithms[algo_idx], step,
cur_loss, current_train_items[algo_idx])
# Periodically evaluate model
if step >= next_eval:
eval_model.params = train_model.params
for algo_idx in range(len(train_samplers)):
common_extras = {'examples_seen': current_train_items[algo_idx],
'step': step,
'algorithm': FLAGS.algorithms[algo_idx]}
# Validation info.
new_rng_key, rng_key = jax.random.split(rng_key)
val_stats = collect_and_eval(
val_samplers[algo_idx],
functools.partial(eval_model.predict, algorithm_index=algo_idx),
val_sample_counts[algo_idx],
new_rng_key,
extras=common_extras)
logging.info('(val) algo %s step %d: %s',
FLAGS.algorithms[algo_idx], step, val_stats)
val_scores[algo_idx] = val_stats['score']
next_eval += FLAGS.eval_every
# If best total score, update best checkpoint.
# Also save a best checkpoint on the first step.
msg = (f'best avg val score was '
f'{best_score/len(FLAGS.algorithms):.3f}, '
f'current avg val score is {np.mean(val_scores):.3f}, '
f'val scores are: ')
msg += ', '.join(
['%s: %.3f' % (x, y) for (x, y) in zip(FLAGS.algorithms, val_scores)])
if (sum(val_scores) > best_score) or step == 0:
best_score = sum(val_scores)
logging.info('Checkpointing best model, %s', msg)
train_model.save_model('best.pkl')
else:
logging.info('Not saving new best model, %s', msg)
step += 1
length_idx = (length_idx + 1) % len(train_lengths)
logging.info('Restoring best model from checkpoint...')
eval_model.restore_model('best.pkl', only_load_processor=False)
for algo_idx in range(len(train_samplers)):
common_extras = {'examples_seen': current_train_items[algo_idx],
'step': step,
'algorithm': FLAGS.algorithms[algo_idx]}
new_rng_key, rng_key = jax.random.split(rng_key)
test_stats = collect_and_eval(
test_samplers[algo_idx],
functools.partial(eval_model.predict, algorithm_index=algo_idx),
test_sample_counts[algo_idx],
new_rng_key,
extras=common_extras)
logging.info('(test) algo %s : %s', FLAGS.algorithms[algo_idx], test_stats)
logging.info('Done!')
if __name__ == '__main__':
app.run(main)
|