Lim0011 commited on
Commit
12b2c15
Β·
1 Parent(s): e64c25b

update example

Browse files
This view is limited to 50 files because it contains too many changes. Β  See raw diff
Files changed (50) hide show
  1. .gradio/certificate.pem +31 -0
  2. .history/app_20250403101057.py +324 -0
  3. .history/app_20250403105942.py +324 -0
  4. .history/app_20250403105943.py +324 -0
  5. .history/app_20250403110426.py +324 -0
  6. .history/app_20250403110505.py +324 -0
  7. .history/app_20250403110510.py +324 -0
  8. .history/app_20250403111148.py +324 -0
  9. .history/app_20250403111153.py +324 -0
  10. .history/app_20250403111234.py +324 -0
  11. .history/app_20250403111235.py +324 -0
  12. .history/app_20250403111239.py +324 -0
  13. .history/app_20250403111437.py +324 -0
  14. .history/app_20250403111440.py +324 -0
  15. .history/app_20250403111446.py +324 -0
  16. .history/app_20250403111513.py +324 -0
  17. .history/app_20250403111519.py +324 -0
  18. .history/app_20250403131001.py +324 -0
  19. .history/app_20250403131149.py +324 -0
  20. .history/app_20250403131255.py +324 -0
  21. .history/app_20250403131329.py +324 -0
  22. .history/app_20250403131335.py +324 -0
  23. .history/app_20250403131446.py +324 -0
  24. .history/app_20250403131524.py +324 -0
  25. .history/app_20250403135543.py +324 -0
  26. app.py +4 -4
  27. reactagent/__pycache__/__init__.cpython-310.pyc +0 -0
  28. reactagent/__pycache__/__init__.cpython-38.pyc +0 -0
  29. reactagent/__pycache__/environment.cpython-310.pyc +0 -0
  30. reactagent/__pycache__/environment.cpython-38.pyc +0 -0
  31. reactagent/__pycache__/high_level_actions.cpython-310.pyc +0 -0
  32. reactagent/__pycache__/high_level_actions.cpython-38.pyc +0 -0
  33. reactagent/__pycache__/llm.cpython-310.pyc +0 -0
  34. reactagent/__pycache__/llm.cpython-38.pyc +0 -0
  35. reactagent/__pycache__/low_level_actions.cpython-310.pyc +0 -0
  36. reactagent/__pycache__/low_level_actions.cpython-38.pyc +0 -0
  37. reactagent/__pycache__/p2m_actions.cpython-310.pyc +0 -0
  38. reactagent/__pycache__/prepare_task.cpython-310.pyc +0 -0
  39. reactagent/__pycache__/runner.cpython-310.pyc +0 -0
  40. reactagent/__pycache__/schema.cpython-310.pyc +0 -0
  41. reactagent/__pycache__/schema.cpython-38.pyc +0 -0
  42. reactagent/agents/__pycache__/__init__.cpython-310.pyc +0 -0
  43. reactagent/agents/__pycache__/agent.cpython-310.pyc +0 -0
  44. reactagent/agents/__pycache__/agent_research.cpython-310.pyc +0 -0
  45. reactagent/agents/__pycache__/format.cpython-310.pyc +0 -0
  46. reactagent/prompt2model/__pycache__/__init__.cpython-310.pyc +0 -0
  47. reactagent/prompt2model/dataset_generator/__pycache__/__init__.cpython-310.pyc +0 -0
  48. reactagent/prompt2model/dataset_generator/__pycache__/base.cpython-310.pyc +0 -0
  49. reactagent/prompt2model/dataset_generator/__pycache__/mock.cpython-310.pyc +0 -0
  50. reactagent/prompt2model/dataset_generator/__pycache__/prompt_based.cpython-310.pyc +0 -0
.gradio/certificate.pem ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ -----BEGIN CERTIFICATE-----
2
+ MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
3
+ TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
4
+ cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
5
+ WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
6
+ ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
7
+ MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
8
+ h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
9
+ 0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
10
+ A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
11
+ T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
12
+ B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
13
+ B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
14
+ KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
15
+ OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
16
+ jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
17
+ qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
18
+ rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
19
+ HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
20
+ hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
21
+ ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
22
+ 3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
23
+ NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
24
+ ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
25
+ TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
26
+ jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
27
+ oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
28
+ 4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
29
+ mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
30
+ emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
31
+ -----END CERTIFICATE-----
.history/app_20250403101057.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## This UI is for predefined example demo only.")
219
+ gr.Markdown("## To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403105942.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("<span style='color:red;'> ## This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403105943.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("<span style='color:red;'> ## This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403110426.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("<span style='color:red;'> ## This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403110505.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("##<span style='color:red;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403110510.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("##<span style='color:red;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403111148.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:red;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403111153.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:red;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403111234.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:red;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:red;'> To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403111235.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:red;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:red;'> To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403111239.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:red;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:red;'> To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403111437.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:red;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:Orange;'> To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403111440.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:red;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:Orange;'> To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403111446.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:red;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:Orange;'> To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403111513.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:Orange;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:Orange;'> To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403111519.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:Orange;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:Orange;'> To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403131001.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# [MLR- Copilot: Machine Learning Research based on LLM Agents](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:Orange;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:Orange;'> To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch(share=True)
.history/app_20250403131149.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# [MLR- Copilot: Machine Learning Research based on LLM Agents](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:Orange;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:Orange;'> To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch()
.history/app_20250403131255.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# [MLR- Copilot: Machine Learning Research based on LLM Agents](https://www.arxiv.org/abs/2408.14033)")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:Orange;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:Orange;'> To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch()
.history/app_20250403131329.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:Orange;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:Orange;'> To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch()
.history/app_20250403131335.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:Orange;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:Orange;'> To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch()
.history/app_20250403131446.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:Orange;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:Orange;'> To reproduce the results please use [Github Software](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch()
.history/app_20250403131524.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:Orange;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:Orange;'> To reproduce the results please use [Github](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch()
.history/app_20250403135543.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from pathlib import Path
3
+ from reactagent.environment import Environment
4
+ from reactagent.agents.agent_research import ResearchAgent
5
+ from reactagent.runner import create_parser
6
+ from reactagent import llm
7
+ from reactagent.users.user import User
8
+ import os
9
+ import json
10
+
11
+
12
+ # Global variables to store session state
13
+ env = None
14
+ agent = None
15
+ state_example = False
16
+ state_extract = False
17
+ state_generate = False
18
+ state_agent = False
19
+ state_complete = False
20
+ index_ex = "1"
21
+
22
+ example_text = [
23
+ "Research Paper 1: Dataset and Baseline for Automatic Student Feedback Analysis",
24
+ "Research Paper 2: An Empirical Study on the Impact of Code Review on Software Quality"
25
+ ]
26
+
27
+ # Load example JSON file
28
+ def load_example_data():
29
+ with open("example/example_data.json", "r") as json_file:
30
+ example_data = json.load(json_file)
31
+
32
+ for idx in example_data.keys():
33
+ try:
34
+ file = example_data[idx]["code_init"]
35
+ with open(os.path.join("example", file), "r") as f:
36
+ example_data[idx]["code_init"] = f.read()
37
+ except FileNotFoundError:
38
+ print(f"File not found: {file}. Skipping key: {idx}")
39
+ try:
40
+ file = example_data[idx]["code_final"]
41
+ with open(os.path.join("example", file), "r") as f:
42
+ example_data[idx]["code_final"] = f.read()
43
+ except FileNotFoundError:
44
+ print(f"File not found: {file}. Skipping key: {idx}")
45
+ return example_data
46
+
47
+ example_data = load_example_data()
48
+
49
+ # Function to handle the selection of an example and populate the respective fields
50
+ def load_example(example_id):
51
+ global index_ex
52
+ index_ex = str(example_id)
53
+ example = example_data[index_ex]
54
+ paper_text = 'Title:\t' + example['title'] + '\n\nAbstract:\t' + example['abstract']
55
+ return paper_text
56
+
57
+ example_text = [load_example(1), load_example(2)]
58
+
59
+ # Function to handle example clicks
60
+ def load_example_and_set_index(paper_text_input):
61
+ global index_ex, state_example
62
+ state_example = True
63
+ index_ex = str(example_text.index(paper_text_input) + 1)
64
+ paper_text = load_example(index_ex)
65
+
66
+ return paper_text, "", "", "", "", "", ""
67
+
68
+
69
+
70
+ ########## Phase 1 ##############
71
+
72
+ def extract_research_elements(paper_text):
73
+ global state_extract, index_ex, state_example
74
+ if not state_example or paper_text == "":
75
+ return "", "", "", ""
76
+ state_extract = True
77
+ if paper_text != load_example(index_ex):
78
+ return "", "", "", ""
79
+ example = example_data[index_ex]
80
+ tasks = example['research_tasks']
81
+ gaps = example['research_gaps']
82
+ keywords = example['keywords']
83
+ recent_works = "\n".join(example['recent_works'])
84
+ return tasks, gaps, keywords, recent_works
85
+
86
+
87
+ # Step 2: Generate Research Hypothesis and Experiment Plan
88
+ def generate_and_store(paper_text, tasks, gaps, keywords, recent_works):
89
+ if (not state_extract or not state_example or paper_text == ""):
90
+ return "", "", "", ""
91
+ global state_generate, index_ex
92
+ state_generate = True
93
+ hypothesis = example_data[index_ex]['hypothesis']
94
+ experiment_plan = example_data[index_ex]['experiment_plan']
95
+ return hypothesis, experiment_plan, hypothesis, experiment_plan
96
+
97
+ ########## Phase 2 & 3 ##############
98
+ def start_experiment_agent(hypothesis, plan):
99
+ if (not state_extract or not state_generate or not state_example):
100
+ return "", "", ""
101
+ global state_agent, step_index, state_complete
102
+ state_agent = True
103
+ step_index = 0
104
+ state_complete = False
105
+ # predefined_message = f"Implement the following hypothesis and experiment plan:\n\nHypothesis:\n{hypothesis}\n\nExperiment Plan:\n{plan}"
106
+ return example_data[index_ex]['code_init'], predefined_action_log, "", ""
107
+
108
+ def submit_feedback(user_feedback, history, previous_response):
109
+ if (not state_extract or not state_generate or not state_agent or not state_example):
110
+ return "", "", ""
111
+ global step_index, state_complete
112
+ step_index += 1
113
+ msg = history
114
+ if step_index < len(process_steps):
115
+ msg += previous_response + "\nUser feedback:" + user_feedback + "\n\n"
116
+ response_info = process_steps[step_index]
117
+ response = info_to_message(response_info) # Convert dictionary to formatted string
118
+ response += "Please provide feedback based on the history, response entries, and observation, and questions: "
119
+ step_index += 1
120
+ msg += response
121
+ else:
122
+ state_complete = True
123
+ response = "Agent Finished."
124
+
125
+ return msg, response, example_data[index_ex]['code_init'] if state_complete else example_data[index_ex]['code_final'], ""
126
+
127
+ def load_phase_2_inputs(hypothesis, plan):
128
+ return hypothesis, plan, "# Code implementation will be displayed here after Start ExperimentAgent."
129
+
130
+
131
+
132
+ predefined_action_log = """
133
+ [Reasoning]: To understand the initial structure and functionality of train.py for effective improvements.
134
+ [Action]: Inspect Script (train.py)
135
+ Input: {"script_name": "train.py", "start_line_number": "1", "end_line_number": "74"}
136
+ Objective: Understand the training script, including data processing, [...]
137
+ [Observation]: The train.py script imports [...]. Sets random seeds [...]. Defines [...] Placeholder functions [...] exist without implementation. [...]
138
+ [Feedback]: The script structure is clear, but key functions (train_model, predict) need proper implementation for proposed model training and prediction.\n
139
+ """
140
+
141
+
142
+ predefined_observation = """
143
+ Epoch [1/10],
144
+ Train MSE: 0.543,
145
+ Test MSE: 0.688
146
+ Epoch [2/10],
147
+ Train MSE: 0.242,
148
+ Test MSE: 0.493\n
149
+ """
150
+
151
+ # Initialize the global step_index and history
152
+ process_steps = [
153
+ {
154
+ "Action": "Inspect Script Lines (train.py)",
155
+ "Observation": (
156
+ "The train.py script imports necessary libraries (e.g., pandas, sklearn, torch). "
157
+ "Sets random seeds for reproducibility. Defines compute_metrics_for_regression function "
158
+ "to calculate RMSE for different dimensions. Placeholder functions train_model and "
159
+ "predict exist without implementations."
160
+ ),
161
+ },
162
+ {
163
+ "Action": "Execute Script (train.py)",
164
+ "Observation": (
165
+ "The script executed successfully. Generated embeddings using the BERT model. Completed "
166
+ "the training process without errors. Metrics calculation placeholders indicated areas needing implementation."
167
+ ),
168
+ },
169
+ {
170
+ "Action": "Edit Script (train.py)",
171
+ "Observation": (
172
+ "Edited train.py to separate data loading, model definition, training loop, and evaluation into distinct functions. "
173
+ "The edited train.py now has clearly defined functions"
174
+ "for data loading (load_data), model definition (build_model), "
175
+ "training (train_model), and evaluation (evaluate_model). Similarly, eval.py is reorganized to load the model and perform predictions efficiently."
176
+ ),
177
+ },
178
+ {
179
+ "Action": "Retrieve Model",
180
+ "Observation": "CNN and BiLSTM retrieved.",
181
+ },
182
+ {
183
+ "Action": "Execute Script (train.py)",
184
+ "Observation": (
185
+ "The model trained over the specified number of epochs. Training and validation loss values are recorded for each epoch, "
186
+ "the decrease in loss indicates improved model performance."
187
+ )
188
+ },
189
+ {
190
+ "Action": "Evaluation",
191
+ "Observation": predefined_observation,
192
+ }
193
+ ]
194
+ def info_to_message(info):
195
+ msg = ""
196
+ for k, v in info.items():
197
+ if isinstance(v, dict):
198
+ tempv = v
199
+ v = ""
200
+ for k2, v2 in tempv.items():
201
+ v += f"{k2}:\n {v2}\n"
202
+ v = User.indent_text(v, 2)
203
+ msg += '-' * 64
204
+ msg += '\n'
205
+ msg += f"{k}:\n{v}\n"
206
+ return msg
207
+
208
+
209
+ def handle_example_click(example_index):
210
+ global index_ex
211
+ index_ex = example_index
212
+ return load_example(index_ex) # Simply return the text to display it in the textbox
213
+
214
+ # Gradio Interface
215
+ with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents")
217
+ gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:Orange;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:Orange;'> To reproduce the results please use [Github](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
+
221
+
222
+
223
+ gr.Markdown("MLR-Copilot is a framework where LLMs mimic researchers’ thought processes, designed to enhance the productivity of machine learning research by automating the generation and implementation of research ideas. It begins with a research paper, autonomously generating and validating these ideas, while incorporating human feedback to help reach executable research outcomes.")
224
+
225
+
226
+
227
+
228
+ # Use state variables to store generated hypothesis and experiment plan
229
+ hypothesis_state = gr.State("")
230
+ experiment_plan_state = gr.State("")
231
+
232
+ ########## Phase 1: Research Idea Generation Tab ##############
233
+ with gr.Tab("πŸ’‘Stage 1: Research Idea Generation"):
234
+ gr.Markdown("### Extract Research Elements and Generate Research Ideas")
235
+
236
+ with gr.Row():
237
+ with gr.Column():
238
+ paper_text_input = gr.Textbox(value="", lines=10, label="πŸ“‘ Research Paper Text")
239
+ extract_button = gr.Button("πŸ” Extract Research Elements")
240
+ with gr.Row():
241
+ tasks_output = gr.Textbox(placeholder="Research task definition", label="Research Tasks", lines=2, interactive=True)
242
+ gaps_output = gr.Textbox(placeholder="Research gaps of current works", label="Research Gaps", lines=2, interactive=True)
243
+ keywords_output = gr.Textbox(placeholder="Paper keywords", label="Keywords", lines=2, interactive=True)
244
+ recent_works_output = gr.Textbox(placeholder="Recent works extracted from Semantic Scholar", label="Recent Works", lines=2, interactive=True)
245
+ with gr.Column():
246
+ with gr.Row(): # Move the button to the top
247
+ generate_button = gr.Button("✍️ Generate Research Hypothesis & Experiment Plan")
248
+ with gr.Group():
249
+ gr.Markdown("### 🌟 Research Idea")
250
+ with gr.Row():
251
+ hypothesis_output = gr.Textbox(label="Generated Hypothesis", lines=20, interactive=False)
252
+ experiment_plan_output = gr.Textbox(label="Generated Experiment Plan", lines=20, interactive=False)
253
+
254
+ gr.Examples(
255
+ examples=example_text,
256
+ inputs=[paper_text_input],
257
+ outputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output, hypothesis_output, experiment_plan_output],
258
+ fn=load_example_and_set_index,
259
+ run_on_click = True,
260
+ label="⬇️ Click an example to load"
261
+ )
262
+
263
+ # Step 1: Extract Research Elements
264
+ extract_button.click(
265
+ fn=extract_research_elements,
266
+ inputs=paper_text_input,
267
+ outputs=[tasks_output, gaps_output, keywords_output, recent_works_output]
268
+ )
269
+
270
+ generate_button.click(
271
+ fn=generate_and_store,
272
+ inputs=[paper_text_input, tasks_output, gaps_output, keywords_output, recent_works_output],
273
+ outputs=[hypothesis_output, experiment_plan_output, hypothesis_state, experiment_plan_state]
274
+ )
275
+
276
+
277
+
278
+ ########## Phase 2 & 3: Experiment implementation and execution ##############
279
+ with gr.Tab("πŸ§ͺ Stage 2 & Stage 3: Experiment implementation and execution"):
280
+ gr.Markdown("### Interact with the ExperimentAgent")
281
+
282
+ with gr.Row():
283
+ with gr.Column():
284
+ with gr.Group():
285
+ gr.Markdown("### 🌟 Generated Research Idea")
286
+ with gr.Row():
287
+ idea_input = gr.Textbox(label="Generated Research Hypothesis", lines=30, interactive=False)
288
+ plan_input = gr.Textbox(label="Generated Experiment Plan", lines=30, interactive=False)
289
+
290
+ with gr.Column():
291
+ start_exp_agnet = gr.Button("βš™οΈ Start / Reset ExperimentAgent", elem_classes=["agent-btn"])
292
+ with gr.Group():
293
+ gr.Markdown("### Implementation + Execution Log")
294
+ log = gr.Textbox(label="πŸ“– Execution Log", lines=20, interactive=False)
295
+ code_display = gr.Code(label="πŸ§‘β€πŸ’» Implementation", language="python", interactive=False)
296
+
297
+ with gr.Column():
298
+ response = gr.Textbox(label="πŸ€– ExperimentAgent Response", lines=30, interactive=False)
299
+ feedback = gr.Textbox(placeholder="N/A", label="πŸ§‘β€πŸ”¬ User Feedback", lines=3, interactive=True)
300
+ submit_button = gr.Button("Submit", elem_classes=["Submit-btn"])
301
+
302
+ hypothesis_state.change(
303
+ fn=load_phase_2_inputs,
304
+ inputs=[hypothesis_state, experiment_plan_state],
305
+ outputs=[idea_input, plan_input, code_display]
306
+ )
307
+
308
+ # Start research agent
309
+ start_exp_agnet.click(
310
+ fn=start_experiment_agent,
311
+ inputs=[hypothesis_state, experiment_plan_state],
312
+ outputs=[code_display, log, response, feedback]
313
+ )
314
+
315
+ submit_button.click(
316
+ fn=submit_feedback,
317
+ inputs=[feedback, log, response],
318
+ outputs=[log, response, code_display, feedback]
319
+ )
320
+
321
+ # Test
322
+ if __name__ == "__main__":
323
+ step_index = 0
324
+ app.launch()
app.py CHANGED
@@ -213,10 +213,10 @@ def handle_example_click(example_index):
213
 
214
  # Gradio Interface
215
  with gr.Blocks(theme=gr.themes.Default()) as app:
216
- gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents [Paper Link](https://www.arxiv.org/abs/2408.14033)")
217
  gr.Markdown("### ")
218
- gr.Markdown("## This UI is for predefined example demo only.")
219
- gr.Markdown("## To reproduce the results please use software in [Github](https://github.com/du-nlp-lab/MLR-Copilot/).")
220
 
221
 
222
 
@@ -321,4 +321,4 @@ with gr.Blocks(theme=gr.themes.Default()) as app:
321
  # Test
322
  if __name__ == "__main__":
323
  step_index = 0
324
- app.launch(share=True)
 
213
 
214
  # Gradio Interface
215
  with gr.Blocks(theme=gr.themes.Default()) as app:
216
+ gr.Markdown("# MLR- Copilot: Machine Learning Research based on LLM Agents")
217
  gr.Markdown("### ")
218
+ gr.Markdown("## <span style='color:Orange;'> This UI is for predefined example demo only.</span>")
219
+ gr.Markdown("## <span style='color:Orange;'> To reproduce the results please use [Github](https://github.com/du-nlp-lab/MLR-Copilot/).</span>")
220
 
221
 
222
 
 
321
  # Test
322
  if __name__ == "__main__":
323
  step_index = 0
324
+ app.launch()
reactagent/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (143 Bytes). View file
 
reactagent/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (141 Bytes). View file
 
reactagent/__pycache__/environment.cpython-310.pyc ADDED
Binary file (10.9 kB). View file
 
reactagent/__pycache__/environment.cpython-38.pyc ADDED
Binary file (10.9 kB). View file
 
reactagent/__pycache__/high_level_actions.cpython-310.pyc ADDED
Binary file (9.82 kB). View file
 
reactagent/__pycache__/high_level_actions.cpython-38.pyc ADDED
Binary file (9.84 kB). View file
 
reactagent/__pycache__/llm.cpython-310.pyc ADDED
Binary file (4.86 kB). View file
 
reactagent/__pycache__/llm.cpython-38.pyc ADDED
Binary file (4.82 kB). View file
 
reactagent/__pycache__/low_level_actions.cpython-310.pyc ADDED
Binary file (10.7 kB). View file
 
reactagent/__pycache__/low_level_actions.cpython-38.pyc ADDED
Binary file (10.9 kB). View file
 
reactagent/__pycache__/p2m_actions.cpython-310.pyc ADDED
Binary file (7.78 kB). View file
 
reactagent/__pycache__/prepare_task.cpython-310.pyc ADDED
Binary file (1.93 kB). View file
 
reactagent/__pycache__/runner.cpython-310.pyc ADDED
Binary file (2.64 kB). View file
 
reactagent/__pycache__/schema.cpython-310.pyc ADDED
Binary file (2.54 kB). View file
 
reactagent/__pycache__/schema.cpython-38.pyc ADDED
Binary file (2.54 kB). View file
 
reactagent/agents/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (150 Bytes). View file
 
reactagent/agents/__pycache__/agent.cpython-310.pyc ADDED
Binary file (7.69 kB). View file
 
reactagent/agents/__pycache__/agent_research.cpython-310.pyc ADDED
Binary file (10.6 kB). View file
 
reactagent/agents/__pycache__/format.cpython-310.pyc ADDED
Binary file (1.39 kB). View file
 
reactagent/prompt2model/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (212 Bytes). View file
 
reactagent/prompt2model/dataset_generator/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (567 Bytes). View file
 
reactagent/prompt2model/dataset_generator/__pycache__/base.cpython-310.pyc ADDED
Binary file (2.4 kB). View file
 
reactagent/prompt2model/dataset_generator/__pycache__/mock.cpython-310.pyc ADDED
Binary file (1.33 kB). View file
 
reactagent/prompt2model/dataset_generator/__pycache__/prompt_based.cpython-310.pyc ADDED
Binary file (15.6 kB). View file