File size: 3,596 Bytes
12e4ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import cv2
import mediapipe as mp
import numpy as np
import tensorflow as tf
from tensorflow.keras.layers import LSTM
import streamlit as st

labels = np.array(['FALL', 'LYING', 'SIT', 'STAND', 'MOVE'])

n_time_steps = 25
mpPose = mp.solutions.pose
pose = mpPose.Pose()
mpDraw = mp.solutions.drawing_utils

def custom_lstm(*args, **kwargs):
    kwargs.pop('time_major', None)
    return LSTM(*args, **kwargs)

model = tf.keras.models.load_model('bro.h5', custom_objects={'LSTM': custom_lstm})

def make_landmark_timestep(results):
    c_lm = []
    for id, lm in enumerate(results.pose_landmarks.landmark):
        c_lm.append(lm.x)
        c_lm.append(lm.y)
        c_lm.append(lm.z)
        c_lm.append(lm.visibility)
    return c_lm

def draw_landmark_on_image(mpDraw, results, img, label):
    mpDraw.draw_landmarks(img, results.pose_landmarks, mpPose.POSE_CONNECTIONS)
    for id, lm in enumerate(results.pose_landmarks.landmark):
        h, w, c = img.shape
        cx, cy = int(lm.x * w), int(lm.y * h)
        if label != "FALL":
            cv2.circle(img, (cx, cy), 5, (0, 255, 0), cv2.FILLED)
        else:
            cv2.circle(img, (cx, cy), 5, (0, 0, 255), cv2.FILLED)
    return img

def draw_class_on_image(label, img):
    font = cv2.FONT_HERSHEY_SIMPLEX
    bottomLeftCornerOfText = (10, 30)
    fontScale = 1
    fontColor = (0, 255, 0)
    thickness = 2
    lineType = 2
    cv2.putText(img, label,
                bottomLeftCornerOfText,
                font,
                fontScale,
                fontColor,
                thickness,
                lineType)
    return img

def detect(model, lm_list):
    lm_list = np.array(lm_list)
    lm_list = np.expand_dims(lm_list, axis=0)
    results = model.predict(lm_list)
    if results[0][0] >= 0.5: 
        label = labels[0]
    elif results[0][1] >= 0.5:
        label = labels[1]  
    elif results[0][2] >= 0.5:
        label = labels[2]
    elif results[0][3] >= 0.5:
        label = labels[3]
    elif results[0][4] >= 0.5:
        label = labels[4]
    else:
        label = "NONE DETECTION"
    return label

def main():
    st.title("Pose Detection and Classification")
    
    run_type = st.sidebar.selectbox("Select input type", ("Camera", "Video File"))
    
    if run_type == "Camera":
        cap = cv2.VideoCapture(0)
    else:
        video_file = st.sidebar.file_uploader("Upload a video", type=["mp4", "mov", "avi"])
        if video_file is not None:
            # Temporarily save the uploaded video to disk to pass to cv2.VideoCapture
            with open("temp_video.mp4", "wb") as f:
                f.write(video_file.read())
            cap = cv2.VideoCapture("temp_video.mp4")
        else:
            st.write("Please upload a video file.")
            return
    
    stframe = st.empty()
    label = 'Starting...'
    lm_list = []

    while cap.isOpened():
        success, img = cap.read()
        if not success:
            break
        
        imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        results = pose.process(imgRGB)
        
        if results.pose_landmarks:
            c_lm = make_landmark_timestep(results)
            img = draw_landmark_on_image(mpDraw, results, img, label)
            img = draw_class_on_image(label, img)
            lm_list.append(c_lm)
            if len(lm_list) == n_time_steps:
                label = detect(model, lm_list)
                lm_list = []
        
        stframe.image(img, channels="BGR")
        
        if cv2.waitKey(1) == ord('q'):
            break
    
    cap.release()

if __name__ == '__main__':
    main()