Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import mediapipe as mp
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
from tensorflow.keras.layers import LSTM
|
6 |
+
import streamlit as st
|
7 |
+
|
8 |
+
labels = np.array(['FALL', 'LYING', 'SIT', 'STAND', 'MOVE'])
|
9 |
+
|
10 |
+
n_time_steps = 25
|
11 |
+
mpPose = mp.solutions.pose
|
12 |
+
pose = mpPose.Pose()
|
13 |
+
mpDraw = mp.solutions.drawing_utils
|
14 |
+
|
15 |
+
def custom_lstm(*args, **kwargs):
|
16 |
+
kwargs.pop('time_major', None)
|
17 |
+
return LSTM(*args, **kwargs)
|
18 |
+
|
19 |
+
model = tf.keras.models.load_model('bro.h5', custom_objects={'LSTM': custom_lstm})
|
20 |
+
|
21 |
+
def make_landmark_timestep(results):
|
22 |
+
c_lm = []
|
23 |
+
for id, lm in enumerate(results.pose_landmarks.landmark):
|
24 |
+
c_lm.append(lm.x)
|
25 |
+
c_lm.append(lm.y)
|
26 |
+
c_lm.append(lm.z)
|
27 |
+
c_lm.append(lm.visibility)
|
28 |
+
return c_lm
|
29 |
+
|
30 |
+
def draw_landmark_on_image(mpDraw, results, img, label):
|
31 |
+
mpDraw.draw_landmarks(img, results.pose_landmarks, mpPose.POSE_CONNECTIONS)
|
32 |
+
for id, lm in enumerate(results.pose_landmarks.landmark):
|
33 |
+
h, w, c = img.shape
|
34 |
+
cx, cy = int(lm.x * w), int(lm.y * h)
|
35 |
+
if label != "FALL":
|
36 |
+
cv2.circle(img, (cx, cy), 5, (0, 255, 0), cv2.FILLED)
|
37 |
+
else:
|
38 |
+
cv2.circle(img, (cx, cy), 5, (0, 0, 255), cv2.FILLED)
|
39 |
+
return img
|
40 |
+
|
41 |
+
def draw_class_on_image(label, img):
|
42 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
43 |
+
bottomLeftCornerOfText = (10, 30)
|
44 |
+
fontScale = 1
|
45 |
+
fontColor = (0, 255, 0)
|
46 |
+
thickness = 2
|
47 |
+
lineType = 2
|
48 |
+
cv2.putText(img, label,
|
49 |
+
bottomLeftCornerOfText,
|
50 |
+
font,
|
51 |
+
fontScale,
|
52 |
+
fontColor,
|
53 |
+
thickness,
|
54 |
+
lineType)
|
55 |
+
return img
|
56 |
+
|
57 |
+
def detect(model, lm_list):
|
58 |
+
lm_list = np.array(lm_list)
|
59 |
+
lm_list = np.expand_dims(lm_list, axis=0)
|
60 |
+
results = model.predict(lm_list)
|
61 |
+
if results[0][0] >= 0.5:
|
62 |
+
label = labels[0]
|
63 |
+
elif results[0][1] >= 0.5:
|
64 |
+
label = labels[1]
|
65 |
+
elif results[0][2] >= 0.5:
|
66 |
+
label = labels[2]
|
67 |
+
elif results[0][3] >= 0.5:
|
68 |
+
label = labels[3]
|
69 |
+
elif results[0][4] >= 0.5:
|
70 |
+
label = labels[4]
|
71 |
+
else:
|
72 |
+
label = "NONE DETECTION"
|
73 |
+
return label
|
74 |
+
|
75 |
+
def main():
|
76 |
+
st.title("Pose Detection and Classification")
|
77 |
+
|
78 |
+
run_type = st.sidebar.selectbox("Select input type", ("Camera", "Video File"))
|
79 |
+
|
80 |
+
if run_type == "Camera":
|
81 |
+
cap = cv2.VideoCapture(0)
|
82 |
+
else:
|
83 |
+
video_file = st.sidebar.file_uploader("Upload a video", type=["mp4", "mov", "avi"])
|
84 |
+
if video_file is not None:
|
85 |
+
# Temporarily save the uploaded video to disk to pass to cv2.VideoCapture
|
86 |
+
with open("temp_video.mp4", "wb") as f:
|
87 |
+
f.write(video_file.read())
|
88 |
+
cap = cv2.VideoCapture("temp_video.mp4")
|
89 |
+
else:
|
90 |
+
st.write("Please upload a video file.")
|
91 |
+
return
|
92 |
+
|
93 |
+
stframe = st.empty()
|
94 |
+
label = 'Starting...'
|
95 |
+
lm_list = []
|
96 |
+
|
97 |
+
while cap.isOpened():
|
98 |
+
success, img = cap.read()
|
99 |
+
if not success:
|
100 |
+
break
|
101 |
+
|
102 |
+
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
103 |
+
results = pose.process(imgRGB)
|
104 |
+
|
105 |
+
if results.pose_landmarks:
|
106 |
+
c_lm = make_landmark_timestep(results)
|
107 |
+
img = draw_landmark_on_image(mpDraw, results, img, label)
|
108 |
+
img = draw_class_on_image(label, img)
|
109 |
+
lm_list.append(c_lm)
|
110 |
+
if len(lm_list) == n_time_steps:
|
111 |
+
label = detect(model, lm_list)
|
112 |
+
lm_list = []
|
113 |
+
|
114 |
+
stframe.image(img, channels="BGR")
|
115 |
+
|
116 |
+
if cv2.waitKey(1) == ord('q'):
|
117 |
+
break
|
118 |
+
|
119 |
+
cap.release()
|
120 |
+
|
121 |
+
if __name__ == '__main__':
|
122 |
+
main()
|