Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import tempfile
|
7 |
+
import os
|
8 |
+
from ultralytics import YOLO
|
9 |
+
|
10 |
+
# Load the YOLOv8 model from the local path
|
11 |
+
model = YOLO('best.pt') # Directly reference the best.pt file in the same directory as app.py
|
12 |
+
|
13 |
+
def detect_people(image):
|
14 |
+
results = model(image)
|
15 |
+
return results
|
16 |
+
|
17 |
+
def process_results(results, image):
|
18 |
+
annotated_frame = image.copy()
|
19 |
+
person_detected = False
|
20 |
+
|
21 |
+
for result in results:
|
22 |
+
boxes = result.boxes.xyxy.cpu().numpy().astype(int) # Bounding boxes
|
23 |
+
if len(boxes) > 0:
|
24 |
+
person_detected = True
|
25 |
+
for box in boxes:
|
26 |
+
cv2.rectangle(annotated_frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
|
27 |
+
|
28 |
+
if person_detected:
|
29 |
+
cv2.putText(annotated_frame, 'Canh bao! Co nguoi! Co nguoi', (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)
|
30 |
+
|
31 |
+
return annotated_frame
|
32 |
+
|
33 |
+
def main():
|
34 |
+
st.title("People Detection Application using YOLOv8")
|
35 |
+
|
36 |
+
option = st.sidebar.selectbox("Choose input type", ("Upload Image/Video", "Use Camera"))
|
37 |
+
|
38 |
+
if option == "Upload Image/Video":
|
39 |
+
uploaded_file = st.file_uploader("Upload Image or Video", type=['jpg', 'jpeg', 'png', 'mp4', 'avi', 'mov'])
|
40 |
+
if uploaded_file is not None:
|
41 |
+
if uploaded_file.type.startswith('image'):
|
42 |
+
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
43 |
+
image = cv2.imdecode(file_bytes, 1)
|
44 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
45 |
+
results = detect_people(image)
|
46 |
+
processed_frame = process_results(results, image)
|
47 |
+
st.image(processed_frame, caption='Processed Image.', use_column_width=True)
|
48 |
+
|
49 |
+
elif uploaded_file.type.startswith('video'):
|
50 |
+
tfile = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
51 |
+
tfile.write(uploaded_file.read())
|
52 |
+
tfile.close()
|
53 |
+
st.write(f'Temporary file path: {tfile.name}')
|
54 |
+
vidcap = cv2.VideoCapture(tfile.name)
|
55 |
+
stframe = st.empty()
|
56 |
+
|
57 |
+
while vidcap.isOpened():
|
58 |
+
success, frame = vidcap.read()
|
59 |
+
if not success:
|
60 |
+
break
|
61 |
+
results = detect_people(frame)
|
62 |
+
processed_frame = process_results(results, frame)
|
63 |
+
stframe.image(processed_frame, channels="BGR")
|
64 |
+
vidcap.release()
|
65 |
+
os.remove(tfile.name)
|
66 |
+
|
67 |
+
elif option == "Use Camera":
|
68 |
+
stframe = st.empty()
|
69 |
+
cap = cv2.VideoCapture(0)
|
70 |
+
while True:
|
71 |
+
ret, frame = cap.read()
|
72 |
+
if not ret:
|
73 |
+
break
|
74 |
+
results = detect_people(frame)
|
75 |
+
processed_frame = process_results(results, frame)
|
76 |
+
stframe.image(processed_frame, channels="BGR")
|
77 |
+
cap.release()
|
78 |
+
|
79 |
+
if __name__ == '__main__':
|
80 |
+
main()
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c6a7bd2e5cda881a364febba53bc797c5f82fbd9579005428ba94558566af8e
|
3 |
+
size 6235363
|
readme.MD
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# People Detection
|
2 |
+
|
3 |
+
## How to run
|
4 |
+
- Step 1:
|
5 |
+
```bash
|
6 |
+
pip install -r requirements.txt
|
7 |
+
```
|
8 |
+
- Step 2:
|
9 |
+
```bash
|
10 |
+
streamlit run app.py
|
11 |
+
```
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
torch
|
3 |
+
opencv-python
|
4 |
+
ultralytics
|
5 |
+
numpy
|
6 |
+
Pillow
|