Spaces:
Sleeping
Sleeping
File size: 9,970 Bytes
08fe07d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# app.py
# -*- coding: utf-8 -*-
"""
Vietnamese End-to-End Speech Recognition using Wav2Vec 2.0 with Speaker Diarization.
Streamlit Application with merged speaker segments and timestamps.
"""
import os
import zipfile
import torch
import soundfile as sf
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import kenlm
from pyctcdecode import Alphabet, BeamSearchDecoderCTC, LanguageModel
from huggingface_hub import hf_hub_download
import streamlit as st
import numpy as np
import librosa
import logging
logging.basicConfig(level=logging.INFO)
@st.cache_resource(show_spinner=False)
def load_model_and_tokenizer(cache_dir='./cache/'):
st.info("Loading processor and model...")
processor = Wav2Vec2Processor.from_pretrained(
"nguyenvulebinh/wav2vec2-base-vietnamese-250h",
cache_dir=cache_dir
)
model = Wav2Vec2ForCTC.from_pretrained(
"nguyenvulebinh/wav2vec2-base-vietnamese-250h",
cache_dir=cache_dir
)
st.info("Downloading language model...")
lm_zip_file = hf_hub_download(
repo_id="nguyenvulebinh/wav2vec2-base-vietnamese-250h",
filename="vi_lm_4grams.bin.zip",
cache_dir=cache_dir
)
st.info("Extracting language model...")
with zipfile.ZipFile(lm_zip_file, 'r') as zip_ref:
zip_ref.extractall(cache_dir)
lm_file = os.path.join(cache_dir, 'vi_lm_4grams.bin')
if not os.path.isfile(lm_file):
raise FileNotFoundError(f"Language model file not found: {lm_file}")
st.success("Processor, model, and language model loaded successfully.")
return processor, model, lm_file
@st.cache_resource(show_spinner=False)
def get_decoder_ngram_model(_tokenizer, ngram_lm_path):
st.info("Building decoder with n-gram language model...")
vocab_dict = _tokenizer.get_vocab()
sorted_vocab = sorted((value, key) for (key, value) in vocab_dict.items())
vocab_list = [token for _, token in sorted_vocab][:-2] # Exclude special tokens
alphabet = Alphabet.build_alphabet(vocab_list)
lm_model = kenlm.Model(ngram_lm_path)
decoder = BeamSearchDecoderCTC(alphabet, language_model=LanguageModel(lm_model))
st.success("Decoder built successfully.")
return decoder
def transcribe_chunk(model, processor, decoder, speech_chunk, sampling_rate):
if speech_chunk.ndim > 1:
speech_chunk = np.mean(speech_chunk, axis=1)
speech_chunk = speech_chunk.astype(np.float32)
target_sr = 16000
if sampling_rate != target_sr:
speech_chunk = librosa.resample(speech_chunk, orig_sr=sampling_rate, target_sr=target_sr)
sampling_rate = target_sr
MIN_DURATION = 0.5 # seconds
MIN_SAMPLES = int(MIN_DURATION * sampling_rate)
if len(speech_chunk) < MIN_SAMPLES:
# Pad with zeros
padding = MIN_SAMPLES - len(speech_chunk)
speech_chunk = np.pad(speech_chunk, (0, padding), 'constant')
input_values = processor(
speech_chunk, sampling_rate=sampling_rate, return_tensors="pt"
).input_values
with torch.no_grad():
logits = model(input_values).logits[0]
beam_search_output = decoder.decode(
logits.cpu().detach().numpy(),
beam_width=500
)
return beam_search_output
def alternative_speaker_diarization(audio_file, num_speakers=2):
try:
# Use librosa to load the audio file
y, sr = librosa.load(audio_file, sr=None)
# Rough segmentation based on energy
intervals = librosa.effects.split(y, top_db=30) # Adjust top_db as needed
# Merge very short intervals
MIN_INTERVAL_DURATION = 0.5 # seconds
MIN_SAMPLES = int(MIN_INTERVAL_DURATION * sr)
merged_intervals = []
for interval in intervals:
if merged_intervals and (interval[0] - merged_intervals[-1][1]) < MIN_SAMPLES:
merged_intervals[-1][1] = interval[1]
else:
merged_intervals.append([interval[0], interval[1]])
# Assign speakers cyclically
segments = []
for i, (start, end) in enumerate(merged_intervals):
speaker_id = i % num_speakers
start_time = start / sr
end_time = end / sr
segments.append((start_time, end_time, speaker_id))
return segments
except Exception as e:
st.error(f"Speaker diarization failed: {e}")
# Fallback to a simple equal-length segmentation
audio, sr = sf.read(audio_file)
total_duration = len(audio) / sr
segment_duration = total_duration / num_speakers
segments = []
for i in range(num_speakers):
start = i * segment_duration
end = (i + 1) * segment_duration
segments.append((start, end, i))
return segments
def process_segments(audio_file, segments, model, processor, decoder, sampling_rate=16000):
speech, sr = sf.read(audio_file)
final_transcriptions = []
# Remove duplicate or overlapping segments
unique_segments = []
for segment in sorted(segments, key=lambda x: x[0]):
if not unique_segments or segment[0] >= unique_segments[-1][1]:
unique_segments.append(segment)
for start, end, speaker_id in unique_segments:
start_sample = int(start * sr)
end_sample = int(end * sr)
speech_chunk = speech[start_sample:end_sample]
transcript = transcribe_chunk(model, processor, decoder, speech_chunk, sr)
# Only add non-empty transcripts
if transcript.strip():
# Lưu (start, end, speaker_id, transcript)
final_transcriptions.append((start, end, speaker_id, transcript))
return final_transcriptions
def format_timestamp(seconds):
# Định dạng thời gian thành MM:SS
total_seconds = int(seconds)
mm = total_seconds // 60
ss = total_seconds % 60
return f"{mm:02d}:{ss:02d}"
def merge_speaker_segments(final_transcriptions):
# Gộp các đoạn cùng speaker liên tiếp
if not final_transcriptions:
return []
merged_results = []
prev_start, prev_end, prev_speaker_id, prev_text = final_transcriptions[0]
for i in range(1, len(final_transcriptions)):
start, end, speaker_id, text = final_transcriptions[i]
if speaker_id == prev_speaker_id:
# Cùng speaker, gộp đoạn
prev_end = end
prev_text += " " + text
else:
# Khác speaker
merged_results.append((prev_start, prev_end, prev_speaker_id, prev_text))
prev_start, prev_end, prev_speaker_id, prev_text = start, end, speaker_id, text
# Thêm đoạn cuối cùng
merged_results.append((prev_start, prev_end, prev_speaker_id, prev_text))
return merged_results
def main():
st.title("🇻🇳 Vietnamese Speech Recognition with Speaker Diarization (with merging & timestamps)")
st.write("""
Upload an audio file, select the number of speakers, and get the transcribed text with timestamps and merged segments for each speaker.
""")
# Sidebar for inputs
st.sidebar.header("Input Parameters")
uploaded_file = st.sidebar.file_uploader("Upload Audio File", type=["wav", "mp3", "flac", "m4a"])
num_speakers = st.sidebar.slider("Number of Speakers", min_value=1, max_value=5, value=2, step=1)
if uploaded_file is not None:
# Save the uploaded file to a temporary location
temp_audio_path = "temp_audio_file"
with open(temp_audio_path, "wb") as f:
f.write(uploaded_file.getbuffer())
# Display audio player
st.audio(uploaded_file, format='audio/wav')
if st.button("Transcribe"):
with st.spinner("Processing..."):
try:
# Load models
processor, model, lm_file = load_model_and_tokenizer()
decoder = get_decoder_ngram_model(processor.tokenizer, lm_file)
# Speaker diarization
segments = alternative_speaker_diarization(temp_audio_path, num_speakers=num_speakers)
if not segments:
st.warning("No speech segments detected.")
return
# Process segments
final_transcriptions = process_segments(temp_audio_path, segments, model, processor, decoder)
# Merge consecutive segments of the same speaker
merged_results = merge_speaker_segments(final_transcriptions)
# Display results
if merged_results:
st.success("Transcription Completed!")
transcription_text = ""
for start_time, end_time, speaker_id, transcript in merged_results:
start_str = format_timestamp(start_time)
end_str = format_timestamp(end_time)
line = f"{start_str} - {end_str} - Speaker {speaker_id + 1}: {transcript}"
st.markdown(line)
transcription_text += line + "\n"
# Provide download link
st.download_button(
label="Download Transcription",
data=transcription_text,
file_name="transcription.txt",
mime="text/plain"
)
else:
st.warning("No transcriptions available.")
except Exception as e:
st.error(f"An error occurred during processing: {e}")
# Optionally, remove the temporary file after processing
if os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
else:
st.info("Please upload an audio file to get started.")
if __name__ == '__main__':
main()
|