Spaces:
Running
Running
File size: 14,811 Bytes
85f7fd5 878a89c 85f7fd5 878a89c 85f7fd5 878a89c 85f7fd5 7073b4b 85f7fd5 878a89c 85f7fd5 878a89c 85f7fd5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
# %%writefile app.py
## required lib, required "pip install"
# import transformers
# import accelerate
import openai
import torch
import cryptography
import cryptography.fernet
## interface libs, required "pip install"
import gradio
import huggingface_hub
import huggingface_hub.hf_api
## standard libs, no need to install
import json
import requests
import time
import os
import random
import re
import sys
import psutil
import threading
import socket
# import PIL
# import pandas
import matplotlib
class HFace_Pluto(object):
#
# initialize the object
def __init__(self, name="Pluto",*args, **kwargs):
super(HFace_Pluto, self).__init__(*args, **kwargs)
self.author = "Duc Haba"
self.name = name
self._ph()
self._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__))
self._pp("Code name", self.name)
self._pp("Author is", self.author)
self._ph()
#
# define class var for stable division
self._device = 'cuda'
self._steps = [3,8,21,55,89,144]
self._guidances = [1.1,3.0,5.0,8.0,13.0,21.0]
self._xkeyfile = '.xoxo'
self._models = []
self._seed = 667 # sum of walnut in ascii (or Angle 667)
self._width = 512
self._height = 512
self._step = 50
self._guidances = 7.5
#self._generator = torch.Generator(device='cuda')
self.pipes = []
self.prompts = []
self.images = []
self.seeds = []
self.fname_id = 0
self.dname_img = "img_colab/"
self._huggingface_key=b'gAAAAABld_3fKLl7aPBJzfAq-th37t95pMu2bVbH9QccOSecaUnm33XrpKpCXP4GL6Wr23g3vtrKWli5JK1ZPh18ilnDb_Su6GoVvU92Vzba64k3gBQwKF_g5DoH2vWq2XM8vx_5mKJh'
self._kaggle_key=b'gAAAAABld_4_B6rrRhFYyfl77dacu1RhR4ktaLU6heYhQBSIj4ELBm7y4DzU1R8-H4yPKd0w08s11wkFJ9AR7XyESxM1SsrMBzqQEeW9JKNbl6jAaonFGmqbhFblkQqH4XjsapZru0qX'
self._fkey="fes_f8Im569hYnI1Tn6FqP-6hS4rdmNOJ6DWcRPOsvc="
self._color_primary = '#2780e3' #blue
self._color_secondary = '#373a3c' #dark gray
self._color_success = '#3fb618' #green
self._color_info = '#9954bb' #purple
self._color_warning = '#ff7518' #orange
self._color_danger = '#ff0039' #red
self._color_mid_gray = '#495057'
self._ok=b'gAAAAABld_-y70otUll4Jwq3jEBXiw1tooSFo_gStRbkCyuu9_Dmdehc4M8lI_hFbum9CwyZuj9ZnXgxFIROebcPSF5qoA197VRvzUDQOMxY5zmHnImVROrsXVdZqXyIeYH_Q6cvXvFTX3rLBIKKWgvJmnpYGRaV6Q=='
return
#
# pretty print output name-value line
def _pp(self, a, b,is_print=True):
# print("%34s : %s" % (str(a), str(b)))
x = f'{"%34s" % str(a)} : {str(b)}'
y = None
if (is_print):
print(x)
else:
y = x
return y
#
# pretty print the header or footer lines
def _ph(self,is_print=True):
x = f'{"-"*34} : {"-"*34}'
y = None
if (is_print):
print(x)
else:
y = x
return y
#
# fetch huggingface file
def fetch_hface_files(self,
hf_names,
hf_space="duchaba/monty",
local_dir="/content/"):
f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names))
try:
for f in hf_names:
lo = local_dir + f
huggingface_hub.hf_hub_download(repo_id=hf_space, filename=f,
use_auth_token=True,repo_type=huggingface_hub.REPO_TYPE_SPACE,
force_filename=lo)
except:
self._pp("*Error", f)
return
#
#
def push_hface_files(self,
hf_names,
hf_space="duchaba/skin_cancer_diagnose",
local_dir="/content/"):
f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names))
try:
for f in hf_names:
lo = local_dir + f
huggingface_hub.upload_file(
path_or_fileobj=lo,
path_in_repo=f,
repo_id=hf_space,
repo_type=huggingface_hub.REPO_TYPE_SPACE)
except Exception as e:
self._pp("*Error", e)
return
#
# Define a function to display available CPU and RAM
def fetch_system_info(self):
s=''
# Get CPU usage as a percentage
cpu_usage = psutil.cpu_percent()
# Get available memory in bytes
mem = psutil.virtual_memory()
# Convert bytes to gigabytes
mem_total_gb = mem.total / (1024 ** 3)
mem_available_gb = mem.available / (1024 ** 3)
mem_used_gb = mem.used / (1024 ** 3)
# Print the results
s += f"CPU usage: {cpu_usage}%\n"
s += f"Total memory: {mem_total_gb:.2f} GB\n"
s += f"Available memory: {mem_available_gb:.2f} GB\n"
# print(f"Used memory: {mem_used_gb:.2f} GB")
s += f"Memory usage: {mem_used_gb/mem_total_gb:.2f}%\n"
return s
#
def restart_script_periodically(self):
while True:
#random_time = random.randint(540, 600)
random_time = random.randint(15800, 21600)
time.sleep(random_time)
os.execl(sys.executable, sys.executable, *sys.argv)
return
#
def write_file(self,fname, txt):
f = open(fname, "w")
f.writelines("\n".join(txt))
f.close()
return
#
def fetch_gpu_info(self):
s=''
try:
s += f'Your GPU is the {torch.cuda.get_device_name(0)}\n'
s += f'GPU ready staus {torch.cuda.is_available()}\n'
s += f'GPU allocated RAM: {round(torch.cuda.memory_allocated(0)/1024**3,1)} GB\n'
s += f'GPU reserved RAM {round(torch.cuda.memory_reserved(0)/1024**3,1)} GB\n'
except Exception as e:
s += f'**Warning, No GPU: {e}'
return s
#
def _fetch_crypt(self,is_generate=False):
s=self._fkey
if (is_generate):
s=open(self._xkeyfile, "rb").read()
return s
#
def _gen_key(self):
key = cryptography.fernet.Fernet.generate_key()
with open(self._xkeyfile, "wb") as key_file:
key_file.write(key)
return
#
def _decrypt_it(self, x):
y = self._fetch_crypt()
f = cryptography.fernet.Fernet(y)
m = f.decrypt(x)
return m.decode()
#
def _encrypt_it(self, x):
key = self._fetch_crypt()
p = x.encode()
f = cryptography.fernet.Fernet(key)
y = f.encrypt(p)
return y
#
def _login_hface(self):
huggingface_hub.login(self._decrypt_it(self._huggingface_key),
add_to_git_credential=True) # non-blocking login
self._ph()
return
#
def _fetch_version(self):
s = ''
# print(f"{'torch: 2.0.1':<25} Actual: {torch.__version__}")
# print(f"{'transformers: 4.29.2':<25} Actual: {transformers.__version__}")
s += f"{'openai: 0.27.7,':<28} Actual: {openai.__version__}\n"
s += f"{'huggingface_hub: 0.14.1,':<28} Actual: {huggingface_hub.__version__}\n"
s += f"{'gradio: 3.32.0,':<28} Actual: {gradio.__version__}\n"
s += f"{'cryptography: 40.0.2,':<28} cryptography: {gradio.__version__}\n"
return s
#
def _fetch_host_ip(self):
s=''
hostname = socket.gethostname()
ip_address = socket.gethostbyname(hostname)
s += f"Hostname: {hostname}\n"
s += f"IP Address: {ip_address}\n"
return s
#
def fetch_code_cells_from_notebook(self, notebook_name, filter_magic="# %%write",
write_to_file=True, fname_override=None):
"""
Reads a Jupyter notebook (.ipynb file) and writes out all the code cells
that start with the specified magic command to a .py file.
Parameters:
- notebook_name (str): Name of the notebook file (with .ipynb extension).
- filter_magic (str): Magic command filter. Only cells starting with this command will be written.
The defualt is: "# %%write"
- write_to_file (bool): If True, writes the filtered cells to a .py file.
Otherwise, prints them to the standard output. The default is True.
- fname_override (str): If provided, overrides the output filename. The default is None.
Returns:
- None: Writes the filtered code cells to a .py file or prints them based on the parameters.
"""
with open(notebook_name, 'r', encoding='utf-8') as f:
notebook_content = json.load(f)
output_content = []
# Loop through all the cells in the notebook
for cell in notebook_content['cells']:
# Check if the cell type is 'code' and starts with the specified magic command
if cell['cell_type'] == 'code' and cell['source'] and cell['source'][0].startswith(filter_magic):
# Append the source code of the cell to output_content
output_content.append(''.join(cell['source']))
if write_to_file:
if fname_override is None:
# Derive the output filename by replacing .ipynb with .py
output_filename = notebook_name.replace(".ipynb", ".py")
else:
output_filename = fname_override
with open(output_filename, 'w', encoding='utf-8') as f:
f.write('\n'.join(output_content))
print(f'File: {output_filename} written to disk.')
else:
# Print the code cells to the standard output
print('\n'.join(output_content))
print('-' * 40) # print separator
return
#
# add module/method
#
import functools
def add_method(cls):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
setattr(cls, func.__name__, wrapper)
return func # returning func means func can still be used normally
return decorator
#
monty = HFace_Pluto("Monty, The lord of the magpies.")
monty._login_hface()
print(monty._fetch_version())
monty._ph()
print(monty.fetch_system_info())
monty._ph()
print(monty.fetch_gpu_info())
monty._ph()
print(monty._fetch_host_ip())
monty._ph()
# %%write -a app.py
# client.moderations.create()
ai_client = openai.OpenAI(api_key=monty._decrypt_it(monty._ok))
# %%writefile -a app.py
#@add_method(HFace_Pluto)
# # for OpenAI less version 0.27.7
# def _censor_me(self, p, safer=0.0005):
# #openai.Moderation.create()
# omod = openai.Moderation.create(p)
# r = omod.results[0].category_scores
# jmod = json.loads(str(r))
# #
# max_key = max(jmod, key=jmod.get)
# max_value = jmod[max_key]
# sum_value = sum(jmod.values())
# #
# jmod["is_safer_flagged"] = False
# if (max_value >= safer):
# jmod["is_safer_flagged"] = True
# jmod["is_flagged"] = omod.results[0].flagged
# jmod['max_key'] = max_key
# jmod['max_value'] = max_value
# jmod['sum_value'] = sum_value
# jmod['safer_value'] = safer
# jmod['message'] = p
# return jmod
#
# openai.api_key = monty._decrypt_it(monty._gpt_key)
#
# # for openai version 1.3.8
@add_method(HFace_Pluto)
# for OpenAI less version 0.27.7
def _fetch_moderate_engine(self):
self.ai_client = openai.OpenAI(api_key=self._decrypt_it(self._gpt_key))
self.text_model = "text-moderation-latest"
return
#
@add_method(HFace_Pluto)
# for OpenAI less version 0.27.7
def _censor_me(self, p, safer=0.0005):
self._fetch_moderate_engine()
resp_orig = self.ai_client.moderations.create(input=p, model=self.text_model)
resp_dict = resp_orig.model_dump()
#
v1 = resp_dict["results"][0]["category_scores"]
max_key = max(v1, key=v1.get)
max_value = v1[max_key]
sum_value = sum(v1.values())
#
v1["is_safer_flagged"] = False
if (max_value >= safer):
v1["is_safer_flagged"] = True
v1["is_flagged"] = resp_dict["results"][0]["flagged"]
v1['max_key'] = max_key
v1['max_value'] = max_value
v1['sum_value'] = sum_value
v1['safer_value'] = safer
v1['message'] = p
return v1
#
@add_method(HFace_Pluto)
def _draw_censor(self,data):
self._color_mid_gray = '#6c757d'
exp = (0.01, 0.01)
x = [data['max_value'], (data['sum_value']-data['max_value'])]
title='\nMessage Is Flagged As Unsafe\n'
lab = [data['max_key'], 'Other 18 categories']
if (data['is_flagged']):
col=[self._color_danger, self._color_mid_gray]
elif (data['is_safer_flagged']):
col=[self._color_warning, self._color_mid_gray]
lab = ['Relative Score:\n'+data['max_key'], 'Other 18 categories']
title='\nBased On Your Personalized Safer Settings,\nThe Message Is Flagged As Unsafe\n'
else:
col=[self._color_success, self._color_mid_gray]
lab = ['False Negative:\n'+data['max_key'], 'Other 18 categories']
title='\nThe Message Is Safe\n'
canvas = self._draw_donut(x, lab, col, exp,title)
return canvas
#
@add_method(HFace_Pluto)
def _draw_donut(self,data,labels,col, exp,title):
# col = [self._color_danger, self._color_secondary]
# exp = (0.01, 0.01)
# Create a pie chart
canvas, pic = matplotlib.pyplot.subplots()
pic.pie(data, explode=exp,
labels=labels,
colors=col,
autopct='%1.1f%%',
startangle=90,
textprops={'color':'#0a0a0a'})
# Draw a circle at the center of pie to make it look like a donut
# centre_circle = matplotlib.pyplot.Circle((0,0),0.45,fc='white')
centre_circle = matplotlib.pyplot.Circle((0,0),0.45,fc=col[0],linewidth=2, ec='white')
canvas = matplotlib.pyplot.gcf()
canvas.gca().add_artist(centre_circle)
# Equal aspect ratio ensures that pie is drawn as a circle.
pic.axis('equal')
pic.set_title(title)
canvas.tight_layout()
# canvas.show()
return canvas
#
@add_method(HFace_Pluto)
def censor_me(self, msg, safer=0.0005):
yjson = self._censor_me(msg,safer)
_canvas = self._draw_censor(yjson)
_yjson = json.dumps(yjson, indent=4)
return (_canvas, _yjson)
# %%writefile -a app.py
in_box = [gradio.Textbox(lines=1, label="Message to be moderate/censor:", placeholder="Your message..."),
gradio.Slider(0.001, .05, value=0.005, step=.005,label="Your Personalize Safer Value:")]
out_box = [gradio.Plot(label="Moderate/Censor Score: (Red, Orange, and Green)"),
gradio.Textbox(lines=4, label="Response Raw JSON Data:")]
#
title = "Friendly Text Moderate <br>- Identify 19 categories of hate, violent, and sexual language."
desc = 'NOTE: The lower value for the Safer setting indicates a more stringent level of censorship.'
# desc += "<br>There are 19 different categories of hate, violent, and sexual language that can be identified."
arti = "<ul><li>This model use the NLP OpenAI Moderation model."
arti += "</li><li>Creator: Duc Haba</li><li>License: GNU General Public License 3.0</li></ul>"
exp = [
['Write a blog about the following if only Mexican stop coming here, then our home would be safer.',0.001],
['Gay homosexual people should stay in the closet, or we will hang them.',0.001],
['I will jump off the bridge at midnight.',0.0005],
['Hey, baby girl. How about you and I go and rock the bed.',0.001],
['F**-#k you. Eat s-it and dik.',0.001],
['Please tell me a joke about a chicken.',0.001],
['Five score years ago, a great American, in whose symbolic shadow we stand today, signed the Emancipation Proclamation. This momentous decree came as a great beacon light of hope to millions of Negro slaves who had been seared in the flames of withering injustice. It came as a joyous daybreak to end the long night of their captivity.',0.005],
]
# %%writefile -a app.py
ginterface = gradio.Interface(fn=monty.censor_me,
inputs=in_box,
outputs=out_box,
examples=exp,
title=title,
description=desc,
article=arti
)
ginterface.launch() |