File size: 14,811 Bytes
85f7fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
878a89c
85f7fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
878a89c
85f7fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
878a89c
85f7fd5
 
 
 
7073b4b
85f7fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
878a89c
85f7fd5
878a89c
85f7fd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# %%writefile app.py

## required lib, required "pip install"
# import transformers
# import accelerate
import openai
import torch
import cryptography
import cryptography.fernet
## interface libs, required "pip install"
import gradio
import huggingface_hub
import huggingface_hub.hf_api
## standard libs, no need to install
import json
import requests
import time
import os
import random
import re
import sys
import psutil
import threading
import socket
# import PIL
# import pandas
import matplotlib
class HFace_Pluto(object):
  #
  # initialize the object
  def __init__(self, name="Pluto",*args, **kwargs):
    super(HFace_Pluto, self).__init__(*args, **kwargs)
    self.author = "Duc Haba"
    self.name = name
    self._ph()
    self._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__))
    self._pp("Code name", self.name)
    self._pp("Author is", self.author)
    self._ph()
    #
    # define class var for stable division
    self._device = 'cuda'
    self._steps = [3,8,21,55,89,144]
    self._guidances = [1.1,3.0,5.0,8.0,13.0,21.0]
    self._xkeyfile = '.xoxo'
    self._models = []
    self._seed = 667 # sum of walnut in ascii (or Angle 667)
    self._width = 512
    self._height = 512
    self._step = 50
    self._guidances = 7.5
    #self._generator = torch.Generator(device='cuda')
    self.pipes = []
    self.prompts = []
    self.images = []
    self.seeds = []
    self.fname_id = 0
    self.dname_img = "img_colab/"
    self._huggingface_key=b'gAAAAABld_3fKLl7aPBJzfAq-th37t95pMu2bVbH9QccOSecaUnm33XrpKpCXP4GL6Wr23g3vtrKWli5JK1ZPh18ilnDb_Su6GoVvU92Vzba64k3gBQwKF_g5DoH2vWq2XM8vx_5mKJh'
    self._kaggle_key=b'gAAAAABld_4_B6rrRhFYyfl77dacu1RhR4ktaLU6heYhQBSIj4ELBm7y4DzU1R8-H4yPKd0w08s11wkFJ9AR7XyESxM1SsrMBzqQEeW9JKNbl6jAaonFGmqbhFblkQqH4XjsapZru0qX'
    self._fkey="fes_f8Im569hYnI1Tn6FqP-6hS4rdmNOJ6DWcRPOsvc="
    self._color_primary = '#2780e3' #blue
    self._color_secondary = '#373a3c' #dark gray
    self._color_success = '#3fb618' #green
    self._color_info = '#9954bb' #purple
    self._color_warning = '#ff7518' #orange
    self._color_danger = '#ff0039' #red
    self._color_mid_gray = '#495057'
    self._ok=b'gAAAAABld_-y70otUll4Jwq3jEBXiw1tooSFo_gStRbkCyuu9_Dmdehc4M8lI_hFbum9CwyZuj9ZnXgxFIROebcPSF5qoA197VRvzUDQOMxY5zmHnImVROrsXVdZqXyIeYH_Q6cvXvFTX3rLBIKKWgvJmnpYGRaV6Q=='
    return
  #
  # pretty print output name-value line
  def _pp(self, a, b,is_print=True):
    # print("%34s : %s" % (str(a), str(b)))
    x = f'{"%34s" % str(a)} : {str(b)}'
    y = None
    if (is_print):
      print(x)
    else:
      y = x
    return y
  #
  # pretty print the header or footer lines
  def _ph(self,is_print=True):
    x = f'{"-"*34} : {"-"*34}'
    y = None
    if (is_print):
      print(x)
    else:
      y = x
    return y
  #
  # fetch huggingface file
  def fetch_hface_files(self,
    hf_names,
    hf_space="duchaba/monty",
    local_dir="/content/"):
    f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names))
    try:
      for f in hf_names:
        lo = local_dir + f
        huggingface_hub.hf_hub_download(repo_id=hf_space, filename=f,
          use_auth_token=True,repo_type=huggingface_hub.REPO_TYPE_SPACE,
          force_filename=lo)
    except:
      self._pp("*Error", f)
    return
  #
  #
  def push_hface_files(self,
    hf_names,
    hf_space="duchaba/skin_cancer_diagnose",
    local_dir="/content/"):
    f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names))
    try:
      for f in hf_names:
        lo = local_dir + f
        huggingface_hub.upload_file(
          path_or_fileobj=lo,
          path_in_repo=f,
          repo_id=hf_space,
          repo_type=huggingface_hub.REPO_TYPE_SPACE)
    except Exception as e:
      self._pp("*Error", e)
    return
  #
  # Define a function to display available CPU and RAM
  def fetch_system_info(self):
    s=''
    # Get CPU usage as a percentage
    cpu_usage = psutil.cpu_percent()
    # Get available memory in bytes
    mem = psutil.virtual_memory()
    # Convert bytes to gigabytes
    mem_total_gb = mem.total / (1024 ** 3)
    mem_available_gb = mem.available / (1024 ** 3)
    mem_used_gb = mem.used / (1024 ** 3)
    # Print the results
    s += f"CPU usage: {cpu_usage}%\n"
    s += f"Total memory: {mem_total_gb:.2f} GB\n"
    s += f"Available memory: {mem_available_gb:.2f} GB\n"
    # print(f"Used memory: {mem_used_gb:.2f} GB")
    s += f"Memory usage: {mem_used_gb/mem_total_gb:.2f}%\n"
    return s
  #
  def restart_script_periodically(self):
    while True:
      #random_time = random.randint(540, 600)
      random_time = random.randint(15800, 21600)
      time.sleep(random_time)
      os.execl(sys.executable, sys.executable, *sys.argv)
    return
  #
  def write_file(self,fname, txt):
    f = open(fname, "w")
    f.writelines("\n".join(txt))
    f.close()
    return
  #
  def fetch_gpu_info(self):
    s=''
    try:
      s += f'Your GPU is the {torch.cuda.get_device_name(0)}\n'
      s += f'GPU ready staus {torch.cuda.is_available()}\n'
      s += f'GPU allocated RAM: {round(torch.cuda.memory_allocated(0)/1024**3,1)} GB\n'
      s += f'GPU reserved RAM {round(torch.cuda.memory_reserved(0)/1024**3,1)} GB\n'
    except Exception as e:
      s += f'**Warning, No GPU: {e}'
    return s
  #
  def _fetch_crypt(self,is_generate=False):
    s=self._fkey
    if (is_generate):
      s=open(self._xkeyfile, "rb").read()
    return s
  #
  def _gen_key(self):
    key = cryptography.fernet.Fernet.generate_key()
    with open(self._xkeyfile, "wb") as key_file:
        key_file.write(key)
    return
  #
  def _decrypt_it(self, x):
    y = self._fetch_crypt()
    f = cryptography.fernet.Fernet(y)
    m = f.decrypt(x)
    return m.decode()
  #
  def _encrypt_it(self, x):
    key = self._fetch_crypt()
    p = x.encode()
    f = cryptography.fernet.Fernet(key)
    y = f.encrypt(p)
    return y
  #
  def _login_hface(self):
    huggingface_hub.login(self._decrypt_it(self._huggingface_key),
      add_to_git_credential=True) # non-blocking login
    self._ph()
    return
  #
  def _fetch_version(self):
    s = ''
    # print(f"{'torch: 2.0.1':<25} Actual: {torch.__version__}")
    # print(f"{'transformers: 4.29.2':<25} Actual: {transformers.__version__}")
    s += f"{'openai: 0.27.7,':<28} Actual: {openai.__version__}\n"
    s += f"{'huggingface_hub: 0.14.1,':<28} Actual: {huggingface_hub.__version__}\n"
    s += f"{'gradio: 3.32.0,':<28} Actual: {gradio.__version__}\n"
    s += f"{'cryptography: 40.0.2,':<28} cryptography: {gradio.__version__}\n"

    return s
  #
  def _fetch_host_ip(self):
    s=''
    hostname = socket.gethostname()
    ip_address = socket.gethostbyname(hostname)
    s += f"Hostname: {hostname}\n"
    s += f"IP Address: {ip_address}\n"
    return s
  #
  def fetch_code_cells_from_notebook(self, notebook_name, filter_magic="# %%write",
    write_to_file=True, fname_override=None):
    """
    Reads a Jupyter notebook (.ipynb file) and writes out all the code cells
    that start with the specified magic command to a .py file.

    Parameters:
    - notebook_name (str): Name of the notebook file (with .ipynb extension).
    - filter_magic (str): Magic command filter. Only cells starting with this command will be written.
        The defualt is: "# %%write"
    - write_to_file (bool): If True, writes the filtered cells to a .py file.
        Otherwise, prints them to the standard output. The default is True.
    - fname_override (str): If provided, overrides the output filename. The default is None.

    Returns:
    - None: Writes the filtered code cells to a .py file or prints them based on the parameters.

    """
    with open(notebook_name, 'r', encoding='utf-8') as f:
      notebook_content = json.load(f)

    output_content = []

    # Loop through all the cells in the notebook
    for cell in notebook_content['cells']:
      # Check if the cell type is 'code' and starts with the specified magic command
      if cell['cell_type'] == 'code' and cell['source'] and cell['source'][0].startswith(filter_magic):
        # Append the source code of the cell to output_content
        output_content.append(''.join(cell['source']))

    if write_to_file:
      if fname_override is None:
        # Derive the output filename by replacing .ipynb with .py
        output_filename = notebook_name.replace(".ipynb", ".py")
      else:
        output_filename = fname_override
      with open(output_filename, 'w', encoding='utf-8') as f:
        f.write('\n'.join(output_content))
      print(f'File: {output_filename} written to disk.')
    else:
      # Print the code cells to the standard output
      print('\n'.join(output_content))
      print('-' * 40)  # print separator
    return
  #
# add module/method
#
import functools
def add_method(cls):
  def decorator(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
      return func(*args, **kwargs)
    setattr(cls, func.__name__, wrapper)
    return func # returning func means func can still be used normally
  return decorator
#
monty = HFace_Pluto("Monty, The lord of the magpies.")
monty._login_hface()
print(monty._fetch_version())
monty._ph()
print(monty.fetch_system_info())
monty._ph()
print(monty.fetch_gpu_info())
monty._ph()
print(monty._fetch_host_ip())
monty._ph()
# %%write -a app.py

# client.moderations.create()
ai_client = openai.OpenAI(api_key=monty._decrypt_it(monty._ok))
# %%writefile -a app.py

#@add_method(HFace_Pluto)
# # for OpenAI less version 0.27.7
# def _censor_me(self, p, safer=0.0005):
#   #openai.Moderation.create()
#   omod = openai.Moderation.create(p)
#   r = omod.results[0].category_scores
#   jmod = json.loads(str(r))
#   #
#   max_key = max(jmod, key=jmod.get)
#   max_value = jmod[max_key]
#   sum_value = sum(jmod.values())
#   #
#   jmod["is_safer_flagged"] = False
#   if (max_value >= safer):
#     jmod["is_safer_flagged"] = True
#   jmod["is_flagged"] = omod.results[0].flagged
#   jmod['max_key'] = max_key
#   jmod['max_value'] = max_value
#   jmod['sum_value'] = sum_value
#   jmod['safer_value'] = safer
#   jmod['message'] = p
#   return jmod
#
# openai.api_key = monty._decrypt_it(monty._gpt_key)
#
# # for openai version 1.3.8
@add_method(HFace_Pluto)
# for OpenAI less version 0.27.7
def _fetch_moderate_engine(self):
  self.ai_client = openai.OpenAI(api_key=self._decrypt_it(self._gpt_key))
  self.text_model = "text-moderation-latest"
  return
#
@add_method(HFace_Pluto)
# for OpenAI less version 0.27.7
def _censor_me(self, p, safer=0.0005):
  self._fetch_moderate_engine()
  resp_orig = self.ai_client.moderations.create(input=p, model=self.text_model)
  resp_dict = resp_orig.model_dump()
  #
  v1 = resp_dict["results"][0]["category_scores"]
  max_key = max(v1, key=v1.get)
  max_value = v1[max_key]
  sum_value = sum(v1.values())
  #
  v1["is_safer_flagged"] = False
  if (max_value >= safer):
    v1["is_safer_flagged"] = True
  v1["is_flagged"] = resp_dict["results"][0]["flagged"]
  v1['max_key'] = max_key
  v1['max_value'] = max_value
  v1['sum_value'] = sum_value
  v1['safer_value'] = safer
  v1['message'] = p
  return v1
#
@add_method(HFace_Pluto)
def _draw_censor(self,data):
  self._color_mid_gray = '#6c757d'
  exp = (0.01, 0.01)
  x = [data['max_value'], (data['sum_value']-data['max_value'])]
  title='\nMessage Is Flagged As Unsafe\n'
  lab = [data['max_key'], 'Other 18 categories']
  if (data['is_flagged']):
    col=[self._color_danger, self._color_mid_gray]
  elif (data['is_safer_flagged']):
    col=[self._color_warning, self._color_mid_gray]
    lab = ['Relative Score:\n'+data['max_key'], 'Other 18 categories']
    title='\nBased On Your Personalized Safer Settings,\nThe Message Is Flagged As Unsafe\n'
  else:
    col=[self._color_success, self._color_mid_gray]
    lab = ['False Negative:\n'+data['max_key'], 'Other 18 categories']
    title='\nThe Message Is Safe\n'
  canvas = self._draw_donut(x, lab, col, exp,title)
  return canvas
#
@add_method(HFace_Pluto)
def _draw_donut(self,data,labels,col, exp,title):
  # col = [self._color_danger, self._color_secondary]
  # exp = (0.01, 0.01)
  # Create a pie chart
  canvas, pic = matplotlib.pyplot.subplots()
  pic.pie(data, explode=exp,
    labels=labels,
    colors=col,
    autopct='%1.1f%%',
    startangle=90,
    textprops={'color':'#0a0a0a'})
  # Draw a circle at the center of pie to make it look like a donut
  # centre_circle = matplotlib.pyplot.Circle((0,0),0.45,fc='white')
  centre_circle = matplotlib.pyplot.Circle((0,0),0.45,fc=col[0],linewidth=2, ec='white')
  canvas = matplotlib.pyplot.gcf()
  canvas.gca().add_artist(centre_circle)

  # Equal aspect ratio ensures that pie is drawn as a circle.
  pic.axis('equal')
  pic.set_title(title)
  canvas.tight_layout()
  # canvas.show()
  return canvas
#
@add_method(HFace_Pluto)
def censor_me(self, msg, safer=0.0005):
  yjson = self._censor_me(msg,safer)
  _canvas = self._draw_censor(yjson)
  _yjson = json.dumps(yjson, indent=4)
  return (_canvas, _yjson)
# %%writefile -a app.py

in_box = [gradio.Textbox(lines=1, label="Message to be moderate/censor:", placeholder="Your message..."),
  gradio.Slider(0.001, .05, value=0.005, step=.005,label="Your Personalize Safer Value:")]
out_box = [gradio.Plot(label="Moderate/Censor Score: (Red, Orange, and Green)"),
  gradio.Textbox(lines=4, label="Response Raw JSON Data:")]
#
title = "Friendly Text Moderate <br>- Identify 19 categories of hate, violent, and sexual language."
desc = 'NOTE: The lower value for the Safer setting indicates a more stringent level of censorship.'
# desc += "<br>There are 19 different categories of hate, violent, and sexual language that can be identified."
arti = "<ul><li>This model use the NLP OpenAI Moderation model."
arti += "</li><li>Creator: Duc Haba</li><li>License: GNU General Public License 3.0</li></ul>"
exp = [
  ['Write a blog about the following if only Mexican stop coming here, then our home would be safer.',0.001],
  ['Gay homosexual people should stay in the closet, or we will hang them.',0.001],
  ['I will jump off the bridge at midnight.',0.0005],
  ['Hey, baby girl. How about you and I go and rock the bed.',0.001],
  ['F**-#k you. Eat s-it and dik.',0.001],
  ['Please tell me a joke about a chicken.',0.001],
  ['Five score years ago, a great American, in whose symbolic shadow we stand today, signed the Emancipation Proclamation. This momentous decree came as a great beacon light of hope to millions of Negro slaves who had been seared in the flames of withering injustice. It came as a joyous daybreak to end the long night of their captivity.',0.005],
  ]
# %%writefile -a app.py

ginterface = gradio.Interface(fn=monty.censor_me,
  inputs=in_box,
  outputs=out_box,
  examples=exp,
  title=title,
  description=desc,
  article=arti
  )
ginterface.launch()