duchaba's picture
Upload app.py with huggingface_hub
2dc49b9
raw
history blame
14.8 kB
# %%writefile app.py
## required lib, required "pip install"
# import transformers
# import accelerate
import openai
import torch
import cryptography
import cryptography.fernet
## interface libs, required "pip install"
import gradio
import huggingface_hub
import huggingface_hub.hf_api
## standard libs, no need to install
import json
import requests
import time
import os
import random
import re
import sys
import psutil
import threading
import socket
# import PIL
# import pandas
import matplotlib
class HFace_Pluto(object):
#
# initialize the object
def __init__(self, name="Pluto",*args, **kwargs):
super(HFace_Pluto, self).__init__(*args, **kwargs)
self.author = "Duc Haba"
self.name = name
self._ph()
self._pp("Hello from class", str(self.__class__) + " Class: " + str(self.__class__.__name__))
self._pp("Code name", self.name)
self._pp("Author is", self.author)
self._ph()
#
# define class var for stable division
self._device = 'cuda'
self._steps = [3,8,21,55,89,144]
self._guidances = [1.1,3.0,5.0,8.0,13.0,21.0]
self._xkeyfile = '.xoxo'
self._models = []
self._seed = 667 # sum of walnut in ascii (or Angle 667)
self._width = 512
self._height = 512
self._step = 50
self._guidances = 7.5
#self._generator = torch.Generator(device='cuda')
self.pipes = []
self.prompts = []
self.images = []
self.seeds = []
self.fname_id = 0
self.dname_img = "img_colab/"
self._huggingface_key=b'gAAAAABld_3fKLl7aPBJzfAq-th37t95pMu2bVbH9QccOSecaUnm33XrpKpCXP4GL6Wr23g3vtrKWli5JK1ZPh18ilnDb_Su6GoVvU92Vzba64k3gBQwKF_g5DoH2vWq2XM8vx_5mKJh'
self._kaggle_key=b'gAAAAABld_4_B6rrRhFYyfl77dacu1RhR4ktaLU6heYhQBSIj4ELBm7y4DzU1R8-H4yPKd0w08s11wkFJ9AR7XyESxM1SsrMBzqQEeW9JKNbl6jAaonFGmqbhFblkQqH4XjsapZru0qX'
self._fkey="fes_f8Im569hYnI1Tn6FqP-6hS4rdmNOJ6DWcRPOsvc="
self._color_primary = '#2780e3' #blue
self._color_secondary = '#373a3c' #dark gray
self._color_success = '#3fb618' #green
self._color_info = '#9954bb' #purple
self._color_warning = '#ff7518' #orange
self._color_danger = '#ff0039' #red
self._color_mid_gray = '#495057'
self._ok=b'gAAAAABld_-y70otUll4Jwq3jEBXiw1tooSFo_gStRbkCyuu9_Dmdehc4M8lI_hFbum9CwyZuj9ZnXgxFIROebcPSF5qoA197VRvzUDQOMxY5zmHnImVROrsXVdZqXyIeYH_Q6cvXvFTX3rLBIKKWgvJmnpYGRaV6Q=='
return
#
# pretty print output name-value line
def _pp(self, a, b,is_print=True):
# print("%34s : %s" % (str(a), str(b)))
x = f'{"%34s" % str(a)} : {str(b)}'
y = None
if (is_print):
print(x)
else:
y = x
return y
#
# pretty print the header or footer lines
def _ph(self,is_print=True):
x = f'{"-"*34} : {"-"*34}'
y = None
if (is_print):
print(x)
else:
y = x
return y
#
# fetch huggingface file
def fetch_hface_files(self,
hf_names,
hf_space="duchaba/monty",
local_dir="/content/"):
f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names))
try:
for f in hf_names:
lo = local_dir + f
huggingface_hub.hf_hub_download(repo_id=hf_space, filename=f,
use_auth_token=True,repo_type=huggingface_hub.REPO_TYPE_SPACE,
force_filename=lo)
except:
self._pp("*Error", f)
return
#
#
def push_hface_files(self,
hf_names,
hf_space="duchaba/skin_cancer_diagnose",
local_dir="/content/"):
f = str(hf_names) + " is not iteratable, type: " + str(type(hf_names))
try:
for f in hf_names:
lo = local_dir + f
huggingface_hub.upload_file(
path_or_fileobj=lo,
path_in_repo=f,
repo_id=hf_space,
repo_type=huggingface_hub.REPO_TYPE_SPACE)
except Exception as e:
self._pp("*Error", e)
return
#
# Define a function to display available CPU and RAM
def fetch_system_info(self):
s=''
# Get CPU usage as a percentage
cpu_usage = psutil.cpu_percent()
# Get available memory in bytes
mem = psutil.virtual_memory()
# Convert bytes to gigabytes
mem_total_gb = mem.total / (1024 ** 3)
mem_available_gb = mem.available / (1024 ** 3)
mem_used_gb = mem.used / (1024 ** 3)
# Print the results
s += f"CPU usage: {cpu_usage}%\n"
s += f"Total memory: {mem_total_gb:.2f} GB\n"
s += f"Available memory: {mem_available_gb:.2f} GB\n"
# print(f"Used memory: {mem_used_gb:.2f} GB")
s += f"Memory usage: {mem_used_gb/mem_total_gb:.2f}%\n"
return s
#
def restart_script_periodically(self):
while True:
#random_time = random.randint(540, 600)
random_time = random.randint(15800, 21600)
time.sleep(random_time)
os.execl(sys.executable, sys.executable, *sys.argv)
return
#
def write_file(self,fname, txt):
f = open(fname, "w")
f.writelines("\n".join(txt))
f.close()
return
#
def fetch_gpu_info(self):
s=''
try:
s += f'Your GPU is the {torch.cuda.get_device_name(0)}\n'
s += f'GPU ready staus {torch.cuda.is_available()}\n'
s += f'GPU allocated RAM: {round(torch.cuda.memory_allocated(0)/1024**3,1)} GB\n'
s += f'GPU reserved RAM {round(torch.cuda.memory_reserved(0)/1024**3,1)} GB\n'
except Exception as e:
s += f'**Warning, No GPU: {e}'
return s
#
def _fetch_crypt(self,is_generate=False):
s=self._fkey
if (is_generate):
s=open(self._xkeyfile, "rb").read()
return s
#
def _gen_key(self):
key = cryptography.fernet.Fernet.generate_key()
with open(self._xkeyfile, "wb") as key_file:
key_file.write(key)
return
#
def _decrypt_it(self, x):
y = self._fetch_crypt()
f = cryptography.fernet.Fernet(y)
m = f.decrypt(x)
return m.decode()
#
def _encrypt_it(self, x):
key = self._fetch_crypt()
p = x.encode()
f = cryptography.fernet.Fernet(key)
y = f.encrypt(p)
return y
#
def _login_hface(self):
huggingface_hub.login(self._decrypt_it(self._huggingface_key),
add_to_git_credential=True) # non-blocking login
self._ph()
return
#
def _fetch_version(self):
s = ''
# print(f"{'torch: 2.0.1':<25} Actual: {torch.__version__}")
# print(f"{'transformers: 4.29.2':<25} Actual: {transformers.__version__}")
s += f"{'openai: 0.27.7,':<28} Actual: {openai.__version__}\n"
s += f"{'huggingface_hub: 0.14.1,':<28} Actual: {huggingface_hub.__version__}\n"
s += f"{'gradio: 3.32.0,':<28} Actual: {gradio.__version__}\n"
s += f"{'cryptography: 40.0.2,':<28} cryptography: {gradio.__version__}\n"
return s
#
def _fetch_host_ip(self):
s=''
hostname = socket.gethostname()
ip_address = socket.gethostbyname(hostname)
s += f"Hostname: {hostname}\n"
s += f"IP Address: {ip_address}\n"
return s
#
def fetch_code_cells_from_notebook(self, notebook_name, filter_magic="# %%write",
write_to_file=True, fname_override=None):
"""
Reads a Jupyter notebook (.ipynb file) and writes out all the code cells
that start with the specified magic command to a .py file.
Parameters:
- notebook_name (str): Name of the notebook file (with .ipynb extension).
- filter_magic (str): Magic command filter. Only cells starting with this command will be written.
The defualt is: "# %%write"
- write_to_file (bool): If True, writes the filtered cells to a .py file.
Otherwise, prints them to the standard output. The default is True.
- fname_override (str): If provided, overrides the output filename. The default is None.
Returns:
- None: Writes the filtered code cells to a .py file or prints them based on the parameters.
"""
with open(notebook_name, 'r', encoding='utf-8') as f:
notebook_content = json.load(f)
output_content = []
# Loop through all the cells in the notebook
for cell in notebook_content['cells']:
# Check if the cell type is 'code' and starts with the specified magic command
if cell['cell_type'] == 'code' and cell['source'] and cell['source'][0].startswith(filter_magic):
# Append the source code of the cell to output_content
output_content.append(''.join(cell['source']))
if write_to_file:
if fname_override is None:
# Derive the output filename by replacing .ipynb with .py
output_filename = notebook_name.replace(".ipynb", ".py")
else:
output_filename = fname_override
with open(output_filename, 'w', encoding='utf-8') as f:
f.write('\n'.join(output_content))
print(f'File: {output_filename} written to disk.')
else:
# Print the code cells to the standard output
print('\n'.join(output_content))
print('-' * 40) # print separator
return
#
# add module/method
#
import functools
def add_method(cls):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
setattr(cls, func.__name__, wrapper)
return func # returning func means func can still be used normally
return decorator
#
monty = HFace_Pluto("Monty, The lord of the magpies.")
monty._login_hface()
print(monty._fetch_version())
monty._ph()
print(monty.fetch_system_info())
monty._ph()
print(monty.fetch_gpu_info())
monty._ph()
print(monty._fetch_host_ip())
monty._ph()
# %%write -a app.py
# client.moderations.create()
# ai_client = openai.OpenAI(api_key=monty._decrypt_it(monty._ok))
# %%writefile -a app.py
#@add_method(HFace_Pluto)
# # for OpenAI less version 0.27.7
# def _censor_me(self, p, safer=0.0005):
# #openai.Moderation.create()
# omod = openai.Moderation.create(p)
# r = omod.results[0].category_scores
# jmod = json.loads(str(r))
# #
# max_key = max(jmod, key=jmod.get)
# max_value = jmod[max_key]
# sum_value = sum(jmod.values())
# #
# jmod["is_safer_flagged"] = False
# if (max_value >= safer):
# jmod["is_safer_flagged"] = True
# jmod["is_flagged"] = omod.results[0].flagged
# jmod['max_key'] = max_key
# jmod['max_value'] = max_value
# jmod['sum_value'] = sum_value
# jmod['safer_value'] = safer
# jmod['message'] = p
# return jmod
#
# openai.api_key = monty._decrypt_it(monty._gpt_key)
#
# # for openai version 1.3.8
@add_method(HFace_Pluto)
# for OpenAI less version 0.27.7
def _fetch_moderate_engine(self):
self.ai_client = openai.OpenAI(api_key=self._decrypt_it(self._ok))
self.text_model = "text-moderation-latest"
return
#
@add_method(HFace_Pluto)
# for OpenAI less version 0.27.7
def _censor_me(self, p, safer=0.0005):
self._fetch_moderate_engine()
resp_orig = self.ai_client.moderations.create(input=p, model=self.text_model)
resp_dict = resp_orig.model_dump()
#
v1 = resp_dict["results"][0]["category_scores"]
max_key = max(v1, key=v1.get)
max_value = v1[max_key]
sum_value = sum(v1.values())
#
v1["is_safer_flagged"] = False
if (max_value >= safer):
v1["is_safer_flagged"] = True
v1["is_flagged"] = resp_dict["results"][0]["flagged"]
v1['max_key'] = max_key
v1['max_value'] = max_value
v1['sum_value'] = sum_value
v1['safer_value'] = safer
v1['message'] = p
return v1
#
@add_method(HFace_Pluto)
def _draw_censor(self,data):
self._color_mid_gray = '#6c757d'
exp = (0.01, 0.01)
x = [data['max_value'], (data['sum_value']-data['max_value'])]
title='\nMessage Is Flagged As Unsafe\n'
lab = [data['max_key'], 'Other 18 categories']
if (data['is_flagged']):
col=[self._color_danger, self._color_mid_gray]
elif (data['is_safer_flagged']):
col=[self._color_warning, self._color_mid_gray]
lab = ['Relative Score:\n'+data['max_key'], 'Other 18 categories']
title='\nBased On Your Personalized Safer Settings,\nThe Message Is Flagged As Unsafe\n'
else:
col=[self._color_success, self._color_mid_gray]
lab = ['False Negative:\n'+data['max_key'], 'Other 18 categories']
title='\nThe Message Is Safe\n'
canvas = self._draw_donut(x, lab, col, exp,title)
return canvas
#
@add_method(HFace_Pluto)
def _draw_donut(self,data,labels,col, exp,title):
# col = [self._color_danger, self._color_secondary]
# exp = (0.01, 0.01)
# Create a pie chart
canvas, pic = matplotlib.pyplot.subplots()
pic.pie(data, explode=exp,
labels=labels,
colors=col,
autopct='%1.1f%%',
startangle=90,
textprops={'color':'#0a0a0a'})
# Draw a circle at the center of pie to make it look like a donut
# centre_circle = matplotlib.pyplot.Circle((0,0),0.45,fc='white')
centre_circle = matplotlib.pyplot.Circle((0,0),0.45,fc=col[0],linewidth=2, ec='white')
canvas = matplotlib.pyplot.gcf()
canvas.gca().add_artist(centre_circle)
# Equal aspect ratio ensures that pie is drawn as a circle.
pic.axis('equal')
pic.set_title(title)
canvas.tight_layout()
# canvas.show()
return canvas
#
@add_method(HFace_Pluto)
def censor_me(self, msg, safer=0.0005):
yjson = self._censor_me(msg,safer)
_canvas = self._draw_censor(yjson)
_yjson = json.dumps(yjson, indent=4)
return (_canvas, _yjson)
# %%writefile -a app.py
in_box = [gradio.Textbox(lines=1, label="Message to be moderate/censor:", placeholder="Your message..."),
gradio.Slider(0.001, .05, value=0.005, step=.005,label="Your Personalize Safer Value:")]
out_box = [gradio.Plot(label="Moderate/Censor Score: (Red, Orange, and Green)"),
gradio.Textbox(lines=4, label="Response Raw JSON Data:")]
#
title = "Friendly Text Moderate <br>- Identify 19 categories of hate, violent, and sexual language."
desc = 'NOTE: The lower value for the Safer setting indicates a more stringent level of censorship.'
# desc += "<br>There are 19 different categories of hate, violent, and sexual language that can be identified."
arti = "<ul><li>This model use the NLP OpenAI Moderation model."
arti += "</li><li>Creator: Duc Haba</li><li>License: GNU General Public License 3.0</li></ul>"
exp = [
['Write a blog about the following if only Mexican stop coming here, then our home would be safer.',0.001],
['Gay homosexual people should stay in the closet, or we will hang them.',0.001],
['I will jump off the bridge at midnight.',0.0005],
['Hey, baby girl. How about you and I go and rock the bed.',0.001],
['F**-#k you. Eat s-it and dik.',0.001],
['Please tell me a joke about a chicken.',0.001],
['Five score years ago, a great American, in whose symbolic shadow we stand today, signed the Emancipation Proclamation. This momentous decree came as a great beacon light of hope to millions of Negro slaves who had been seared in the flames of withering injustice. It came as a joyous daybreak to end the long night of their captivity.',0.005],
]
# %%writefile -a app.py
ginterface = gradio.Interface(fn=monty.censor_me,
inputs=in_box,
outputs=out_box,
examples=exp,
title=title,
description=desc,
article=arti
)
ginterface.launch()