kjcjohnson
commited on
Commit
·
de0bfd0
1
Parent(s):
5c10330
Better performance and config?
Browse files
app.py
CHANGED
@@ -5,14 +5,15 @@ MODEL_ID = "TinyLlama/TinyLlama_v1.1_math_code"
|
|
5 |
|
6 |
handler = loop.EndpointHandler(MODEL_ID)
|
7 |
|
8 |
-
def respond(prompt, grammar):
|
9 |
-
args = { "inputs": prompt, "grammar": grammar }
|
10 |
return handler(args)[0]
|
11 |
|
12 |
demo = gr.Interface(
|
13 |
respond,
|
14 |
inputs=["textarea", "textarea"],
|
15 |
-
outputs=["textarea"]
|
|
|
16 |
)
|
17 |
|
18 |
if __name__ == "__main__":
|
|
|
5 |
|
6 |
handler = loop.EndpointHandler(MODEL_ID)
|
7 |
|
8 |
+
def respond(prompt, grammar, max_new_tokens, max_time):
|
9 |
+
args = { "inputs": prompt, "grammar": grammar, "max-new-tokens": max_new_tokens, "max-time": max_time }
|
10 |
return handler(args)[0]
|
11 |
|
12 |
demo = gr.Interface(
|
13 |
respond,
|
14 |
inputs=["textarea", "textarea"],
|
15 |
+
outputs=["textarea"],
|
16 |
+
additional_inputs=[gr.Number(value=512, precision=0), gr.Number(value=30, precision=0)]
|
17 |
)
|
18 |
|
19 |
if __name__ == "__main__":
|
loop.py
CHANGED
@@ -1,23 +1,51 @@
|
|
1 |
from typing import Dict, List, Any
|
2 |
|
|
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
from transformers.generation.logits_process import LogitsProcessorList, InfNanRemoveLogitsProcessor
|
5 |
from transformers_gad.grammar_utils import IncrementalGrammarConstraint
|
6 |
from transformers_gad.generation.logits_process import GrammarAlignedOracleLogitsProcessor
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
class EndpointHandler():
|
9 |
def __init__(self, path=""):
|
10 |
# Preload
|
|
|
|
|
|
|
|
|
|
|
11 |
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
|
|
|
|
12 |
self.model = AutoModelForCausalLM.from_pretrained(path)
|
|
|
|
|
|
|
|
|
13 |
|
14 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
15 |
# do it!
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
grammar_str = data.get("grammar", "")
|
18 |
-
MAX_NEW_TOKENS
|
19 |
-
MAX_TIME
|
|
|
|
|
20 |
print(grammar_str)
|
|
|
21 |
grammar = IncrementalGrammarConstraint(grammar_str, "root", self.tokenizer)
|
22 |
|
23 |
# Initialize logits processor for the grammar
|
@@ -28,14 +56,24 @@ class EndpointHandler():
|
|
28 |
gad_oracle_processor,
|
29 |
])
|
30 |
|
31 |
-
input_ids = self.tokenizer([inputs], add_special_tokens=False, return_tensors="pt")["input_ids"]
|
|
|
32 |
|
33 |
output = self.model.generate(
|
34 |
input_ids,
|
35 |
do_sample=True,
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
)
|
40 |
|
41 |
gad_oracle_processor.reset()
|
|
|
1 |
from typing import Dict, List, Any
|
2 |
|
3 |
+
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
from transformers.generation.logits_process import LogitsProcessorList, InfNanRemoveLogitsProcessor
|
6 |
from transformers_gad.grammar_utils import IncrementalGrammarConstraint
|
7 |
from transformers_gad.generation.logits_process import GrammarAlignedOracleLogitsProcessor
|
8 |
|
9 |
+
def safe_int_cast(str, default):
|
10 |
+
try:
|
11 |
+
return int(str)
|
12 |
+
except ValueError:
|
13 |
+
return default
|
14 |
+
|
15 |
class EndpointHandler():
|
16 |
def __init__(self, path=""):
|
17 |
# Preload
|
18 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
DTYPE = torch.bfloat16
|
20 |
+
|
21 |
+
self.device = torch.device(DEVICE)
|
22 |
+
|
23 |
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
24 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
25 |
+
|
26 |
self.model = AutoModelForCausalLM.from_pretrained(path)
|
27 |
+
self.model.to(self.device)
|
28 |
+
self.model.to(dtype=DTYPE)
|
29 |
+
self.model.resize_token_embeddings(len(self.tokenizer))
|
30 |
+
self.model = torch.compile(self.model, mode='reduce-overhead', fullgraph=True)
|
31 |
|
32 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
33 |
# do it!
|
34 |
+
MAX_NEW_TOKENS=512
|
35 |
+
MAX_TIME=30
|
36 |
+
TEMPERATURE = 1.0
|
37 |
+
REPETITION_PENALTY = 1.0
|
38 |
+
TOP_P = 1.0
|
39 |
+
TOP_K = 0
|
40 |
+
|
41 |
+
inputs = data.get("inputs", data)
|
42 |
grammar_str = data.get("grammar", "")
|
43 |
+
max_new_tokens = safe_int_cast(data.get("max-new-tokens"), MAX_NEW_TOKENS)
|
44 |
+
max_time = safe_int_cast(data.get("max-time"), MAX_TIME)
|
45 |
+
|
46 |
+
print("=== GOT GRAMMAR ===")
|
47 |
print(grammar_str)
|
48 |
+
print("===================")
|
49 |
grammar = IncrementalGrammarConstraint(grammar_str, "root", self.tokenizer)
|
50 |
|
51 |
# Initialize logits processor for the grammar
|
|
|
56 |
gad_oracle_processor,
|
57 |
])
|
58 |
|
59 |
+
input_ids = self.tokenizer([inputs], add_special_tokens=False, return_tensors="pt", padding=True)["input_ids"]
|
60 |
+
input_ids = input_ids.to(self.model.device)
|
61 |
|
62 |
output = self.model.generate(
|
63 |
input_ids,
|
64 |
do_sample=True,
|
65 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
66 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
67 |
+
max_time=max_time,
|
68 |
+
max_new_tokens=max_new_tokens,
|
69 |
+
top_p=TOP_P,
|
70 |
+
top_k=TOP_K,
|
71 |
+
repetition_penalty=REPETITION_PENALTY,
|
72 |
+
temperature=TEMPERATURE,
|
73 |
+
logits_processor=logits_processors,
|
74 |
+
num_return_sequences=1,
|
75 |
+
return_dict_in_generate=True,
|
76 |
+
output_scores=True
|
77 |
)
|
78 |
|
79 |
gad_oracle_processor.reset()
|