Spaces:
Runtime error
Runtime error
Stefan Dumitrescu
commited on
Commit
·
2f0ed55
1
Parent(s):
9506fdb
Update
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
st.set_page_config(
|
@@ -64,16 +65,24 @@ def setModel(model_checkpoint):
|
|
64 |
model = AutoModelForCausalLM.from_pretrained(model_checkpoint)
|
65 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
66 |
return model, tokenizer
|
|
|
|
|
67 |
#############################################
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
col1, _, col2 = st.columns([10, 1, 16])
|
70 |
|
71 |
with col1:
|
72 |
-
st.
|
73 |
|
74 |
model_checkpoint = st.selectbox("Select model", model_list)
|
75 |
|
76 |
-
st.
|
77 |
|
78 |
tab_greedy, tab_beamsearch, tab_sampling, tab_typical = st.tabs(["Greedy", "Beam-search", "Sampling", "Typical Sampling"])
|
79 |
|
@@ -92,20 +101,19 @@ with col1:
|
|
92 |
|
93 |
st.markdown("""---""")
|
94 |
|
95 |
-
st.
|
96 |
|
97 |
no_repeat_ngrams = st.slider("No repeat n-grams", value=2, min_value=0, max_value=3)
|
98 |
temperature = st.slider("Temperature", value=1.0, min_value=0.0, max_value=1.0, step=0.05)
|
99 |
-
max_length = st.slider("
|
100 |
|
|
|
101 |
|
102 |
-
with col2:
|
103 |
-
with st.container():
|
104 |
-
button_greedy = st.button("Greedy")
|
105 |
-
button_beam_search = st.button("Beam-search")
|
106 |
-
button_sampling = st.button("Sampling")
|
107 |
-
button_typical = st.button("Typical sampling")
|
108 |
|
|
|
|
|
|
|
|
|
109 |
|
110 |
@st.cache(allow_output_mutation=True)
|
111 |
def setModel(model_checkpoint):
|
@@ -114,19 +122,56 @@ def setModel(model_checkpoint):
|
|
114 |
return model, tokenizer
|
115 |
|
116 |
#####################################################
|
117 |
-
#
|
118 |
|
119 |
if 'text' not in st.session_state:
|
120 |
st.session_state['text'] = 'Acesta este un exemplu de text generat de un model de limbă.'
|
121 |
|
122 |
details = ""
|
|
|
123 |
|
124 |
-
if button_greedy:
|
125 |
model, tokenizer = setModel(model_checkpoint)
|
|
|
126 |
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
|
131 |
details = "Text generated using greedy decoding"
|
132 |
|
@@ -135,19 +180,27 @@ if button_sampling:
|
|
135 |
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
136 |
input_ids = tokenized_text.input_ids
|
137 |
attention_mask = tokenized_text.attention_mask
|
138 |
-
|
|
|
139 |
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
|
140 |
details = f"Text generated using sampling, top-p={top_p:.2f}, top-k={top_k:.2f}, temperature={temperature:.2f}"
|
141 |
|
142 |
if button_typical:
|
143 |
model, tokenizer = setModel(model_checkpoint)
|
144 |
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
145 |
-
input_ids = tokenized_text.input_ids
|
146 |
-
|
147 |
-
output = typical_sampling(model, input_ids, attention_mask, no_repeat_ngrams,
|
148 |
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
|
149 |
details = f"Text generated using typical sampling, typical-p={typical_p:.2f}, temperature={temperature:.2f}"
|
|
|
150 |
|
151 |
text_element = col2.text_area('Text:', height=400, key="text")
|
|
|
|
|
152 |
if details != "":
|
153 |
-
col2.
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
|
5 |
st.set_page_config(
|
|
|
65 |
model = AutoModelForCausalLM.from_pretrained(model_checkpoint)
|
66 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
67 |
return model, tokenizer
|
68 |
+
|
69 |
+
|
70 |
#############################################
|
71 |
+
col_title, _, col_b1, col_b2, col_b3, _ = st.columns([18, 1, 8, 8, 8, 1])
|
72 |
+
col_title.markdown("**Playground for text generation with Romanian models**")
|
73 |
+
button_greedy = col_b1.button("Greedy generation")
|
74 |
+
button_sampling = col_b2.button("Sampling generation")
|
75 |
+
button_typical = col_b3.button("Typical sampling generation")
|
76 |
+
|
77 |
|
78 |
col1, _, col2 = st.columns([10, 1, 16])
|
79 |
|
80 |
with col1:
|
81 |
+
st.markdown("**Step 1: Select model**")
|
82 |
|
83 |
model_checkpoint = st.selectbox("Select model", model_list)
|
84 |
|
85 |
+
st.markdown("**Step 2: Adjust specific text generation parameters**")
|
86 |
|
87 |
tab_greedy, tab_beamsearch, tab_sampling, tab_typical = st.tabs(["Greedy", "Beam-search", "Sampling", "Typical Sampling"])
|
88 |
|
|
|
101 |
|
102 |
st.markdown("""---""")
|
103 |
|
104 |
+
st.markdown("**Step 3: Adjust common text generation parameters**")
|
105 |
|
106 |
no_repeat_ngrams = st.slider("No repeat n-grams", value=2, min_value=0, max_value=3)
|
107 |
temperature = st.slider("Temperature", value=1.0, min_value=0.0, max_value=1.0, step=0.05)
|
108 |
+
max_length = st.slider("Number of tokens to generate", value=50, min_value=10, max_value=256)
|
109 |
|
110 |
+
st.markdown("**Step 4: Select a prompt or input your own text, and click generate in the left panel**")
|
111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
def update_prompt():
|
114 |
+
st.session_state['text'] = prompt
|
115 |
+
|
116 |
+
prompt = st.selectbox("Select prompt", model_list, on_change=update_prompt)
|
117 |
|
118 |
@st.cache(allow_output_mutation=True)
|
119 |
def setModel(model_checkpoint):
|
|
|
122 |
return model, tokenizer
|
123 |
|
124 |
#####################################################
|
125 |
+
# show-time
|
126 |
|
127 |
if 'text' not in st.session_state:
|
128 |
st.session_state['text'] = 'Acesta este un exemplu de text generat de un model de limbă.'
|
129 |
|
130 |
details = ""
|
131 |
+
tokenized_text = None
|
132 |
|
133 |
+
if button_greedy or button_sampling or button_typical:
|
134 |
model, tokenizer = setModel(model_checkpoint)
|
135 |
+
|
136 |
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
137 |
+
|
138 |
+
if len(tokenized_text.input_ids[0]) + max_length > 512: # need to keep less words
|
139 |
+
keep_last = 512 - max_length
|
140 |
+
print(f"keep last: {keep_last}")
|
141 |
+
input_ids, attention_mask = tokenized_text.input_ids[0][:-keep_last], tokenized_text.attention_mask[0][:-keep_last]
|
142 |
+
previous_ids = tokenized_text.input_ids[0][:keep_last]
|
143 |
+
st.warning(f"kept last {keep_last}")
|
144 |
+
else:
|
145 |
+
input_ids, attention_mask = tokenized_text.input_ids[0], tokenized_text.attention_mask[0]
|
146 |
+
previous_ids = None
|
147 |
+
|
148 |
+
length = min(512, len(input_ids)+max_length)
|
149 |
+
output = greedy_search(model, input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0), no_repeat_ngrams, length)
|
150 |
+
|
151 |
+
if previous_ids is not None:
|
152 |
+
new_text = tokenizer.decode(torch.cat([previous_ids, output[0]], dim=1), skip_special_tokens=True)
|
153 |
+
else:
|
154 |
+
new_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
155 |
+
|
156 |
+
st.session_state['text'] = new_text
|
157 |
+
details = "Text generated using greedy decoding"
|
158 |
+
|
159 |
+
"""
|
160 |
+
if button_greedy:
|
161 |
+
|
162 |
+
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
163 |
+
print(f"len text: {len(tokenized_text.input_ids[0])}")
|
164 |
+
print(f"max_len : {max_length}")
|
165 |
+
if len(tokenized_text.input_ids[0]) + max_length > 512: # need to keep less words
|
166 |
+
keep_last = 512 - max_length
|
167 |
+
print(f"keep last: {keep_last}")
|
168 |
+
input_ids, attention_mask = tokenized_text.input_ids[0][:-keep_last], tokenized_text.attention_mask[0][:-keep_last]
|
169 |
+
st.warning(f"kept last {keep_last}")
|
170 |
+
else:
|
171 |
+
input_ids, attention_mask = tokenized_text.input_ids[0], tokenized_text.attention_mask[0]
|
172 |
+
|
173 |
+
length = min(512, len(input_ids)+max_length)
|
174 |
+
output = greedy_search(model, input_ids.unsqueeze(dim=0), attention_mask.unsqueeze(dim=0), no_repeat_ngrams, length)
|
175 |
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
|
176 |
details = "Text generated using greedy decoding"
|
177 |
|
|
|
180 |
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
181 |
input_ids = tokenized_text.input_ids
|
182 |
attention_mask = tokenized_text.attention_mask
|
183 |
+
length = min(512, len(input_ids[0]) + max_length)
|
184 |
+
output = sampling(model, input_ids, attention_mask, no_repeat_ngrams, length, temperature, top_k, top_p)
|
185 |
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
|
186 |
details = f"Text generated using sampling, top-p={top_p:.2f}, top-k={top_k:.2f}, temperature={temperature:.2f}"
|
187 |
|
188 |
if button_typical:
|
189 |
model, tokenizer = setModel(model_checkpoint)
|
190 |
tokenized_text = tokenizer(st.session_state['text'], add_special_tokens=False, return_tensors="pt")
|
191 |
+
input_ids, attention_mask = tokenized_text.input_ids, tokenized_text.attention_mask
|
192 |
+
length = min(512, len(input_ids[0]) + max_length)
|
193 |
+
output = typical_sampling(model, input_ids, attention_mask, no_repeat_ngrams, length, temperature, typical_p)
|
194 |
st.session_state['text'] = tokenizer.decode(output[0], skip_special_tokens=True)
|
195 |
details = f"Text generated using typical sampling, typical-p={typical_p:.2f}, temperature={temperature:.2f}"
|
196 |
+
"""
|
197 |
|
198 |
text_element = col2.text_area('Text:', height=400, key="text")
|
199 |
+
col2.markdown("""---""")
|
200 |
+
col2.text("Statistics and details:")
|
201 |
if details != "":
|
202 |
+
col2.caption("\tGeneration details: " + details)
|
203 |
+
if tokenized_text is None:
|
204 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
205 |
+
tt = tokenizer(text_element, add_special_tokens=False, return_tensors="pt")
|
206 |
+
col2.caption(f"\tText length is {len(text_element)} characters, {len(tt.input_ids[0])} tokens.")
|