Spaces:
Runtime error
Runtime error
Stefan Dumitrescu
commited on
Commit
·
f4a3863
1
Parent(s):
c44f938
Update
Browse files
app.py
CHANGED
@@ -1,14 +1,7 @@
|
|
1 |
import transformers
|
2 |
import streamlit as st
|
3 |
|
4 |
-
from transformers import AutoTokenizer,
|
5 |
-
|
6 |
-
###################
|
7 |
-
# global variables
|
8 |
-
|
9 |
-
|
10 |
-
###################
|
11 |
-
# page configs and functions
|
12 |
|
13 |
st.set_page_config(
|
14 |
page_title="Romanian Text Generator",
|
@@ -16,29 +9,33 @@ st.set_page_config(
|
|
16 |
layout="wide"
|
17 |
)
|
18 |
|
19 |
-
|
20 |
-
st.sidebar.header("Select Model")
|
21 |
-
model_checkpoint = st.sidebar.radio("", model_list)
|
22 |
-
text_element = st.text_input('Text:', 'Acesta este un exemplu,')
|
23 |
-
|
24 |
-
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
|
|
27 |
|
28 |
-
st.sidebar.header("Select
|
29 |
max_length = st.sidebar.slider("Max Length", value=20, min_value=10, max_value=200)
|
30 |
temperature = st.sidebar.slider("Temperature", value=1.0, min_value=0.0, max_value=1.0, step=0.05)
|
31 |
top_k = st.sidebar.slider("Top-k", min_value=0, max_value=15, step=1, value=0)
|
32 |
top_p = st.sidebar.slider("Top-p", min_value=0.0, max_value=1.0, step=0.05, value=0.9)
|
33 |
|
|
|
34 |
|
35 |
@st.cache(allow_output_mutation=True)
|
36 |
def setModel(model_checkpoint):
|
37 |
-
model =
|
38 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
39 |
return model, tokenizer
|
40 |
|
41 |
-
def infer(model, tokenizer, text,
|
42 |
encoded_prompt = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt")
|
43 |
output_sequences = model.generate(
|
44 |
input_ids=encoded_prompt.input_ids,
|
@@ -53,7 +50,7 @@ def infer(model, tokenizer, text, input_ids, max_length, temperature, top_k, top
|
|
53 |
return output_sequences
|
54 |
|
55 |
model, tokenizer = setModel(model_checkpoint)
|
56 |
-
output_sequences = infer(model, tokenizer, text_element,
|
57 |
|
58 |
for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
|
59 |
print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} ===")
|
|
|
1 |
import transformers
|
2 |
import streamlit as st
|
3 |
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
st.set_page_config(
|
7 |
page_title="Romanian Text Generator",
|
|
|
9 |
layout="wide"
|
10 |
)
|
11 |
|
12 |
+
st.write("Type your text here and press Ctrl+Enter to generate the next sequence:")
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
model_list = [
|
15 |
+
"dumitrescustefan/gpt-neo-romanian-780m"
|
16 |
+
"readerbench/RoGPT2-base",
|
17 |
+
"readerbench/RoGPT2-medium",
|
18 |
+
"readerbench/RoGPT2-large"
|
19 |
+
]
|
20 |
|
21 |
+
st.sidebar.header("Select model")
|
22 |
+
model_checkpoint = st.sidebar.radio("", model_list)
|
23 |
|
24 |
+
st.sidebar.header("Select generation parameters")
|
25 |
max_length = st.sidebar.slider("Max Length", value=20, min_value=10, max_value=200)
|
26 |
temperature = st.sidebar.slider("Temperature", value=1.0, min_value=0.0, max_value=1.0, step=0.05)
|
27 |
top_k = st.sidebar.slider("Top-k", min_value=0, max_value=15, step=1, value=0)
|
28 |
top_p = st.sidebar.slider("Top-p", min_value=0.0, max_value=1.0, step=0.05, value=0.9)
|
29 |
|
30 |
+
text_element = st.text_input('Text:', 'Acesta este un exemplu,')
|
31 |
|
32 |
@st.cache(allow_output_mutation=True)
|
33 |
def setModel(model_checkpoint):
|
34 |
+
model = AutoModelForCausalLM.from_pretrained(model_checkpoint)
|
35 |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
36 |
return model, tokenizer
|
37 |
|
38 |
+
def infer(model, tokenizer, text, max_length, temperature, top_k, top_p):
|
39 |
encoded_prompt = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt")
|
40 |
output_sequences = model.generate(
|
41 |
input_ids=encoded_prompt.input_ids,
|
|
|
50 |
return output_sequences
|
51 |
|
52 |
model, tokenizer = setModel(model_checkpoint)
|
53 |
+
output_sequences = infer(model, tokenizer, text_element, max_length, temperature, top_k, top_p)
|
54 |
|
55 |
for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
|
56 |
print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} ===")
|