import transformers import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM st.set_page_config( page_title="Romanian Text Generator", page_icon="🇷🇴", layout="wide" ) st.write("Type your text here and press Ctrl+Enter to generate the next sequence:") model_list = [ "dumitrescustefan/gpt-neo-romanian-780m", "readerbench/RoGPT2-base", "readerbench/RoGPT2-medium", "readerbench/RoGPT2-large" ] st.sidebar.header("Select model") model_checkpoint = st.sidebar.selectbox("Select model", model_list) t1, t2, t3, t4, t5, t6 = st.tabs(["Greedy", "Beam-search", "Sampling", "Top-k Sampling", "Top-p Sampling", "Typical Sampling"]) t1.write("Greedy") t2.write("Greedy2") t3.write("Greedy3") t4.write("Greedy4") st.sidebar.header("Select generation parameters") max_length = t5.slider("Max Length", value=20, min_value=10, max_value=200) temperature = st.sidebar.slider("Temperature", value=1.0, min_value=0.0, max_value=1.0, step=0.05) top_k = st.sidebar.slider("Top-k", min_value=0, max_value=15, step=1, value=0) top_p = st.sidebar.slider("Top-p", min_value=0.0, max_value=1.0, step=0.05, value=0.9) text_element = st.text_input('Text:', 'Acesta este un exemplu,') @st.cache(allow_output_mutation=True) def setModel(model_checkpoint): model = AutoModelForCausalLM.from_pretrained(model_checkpoint) tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) return model, tokenizer def infer(model, tokenizer, text, max_length, temperature, top_k, top_p): encoded_prompt = tokenizer(text, add_special_tokens=False, return_tensors="pt") output_sequences = model.generate( input_ids=encoded_prompt.input_ids, max_length=max_length, temperature=temperature, top_k=top_k, top_p=top_p, do_sample=True, num_return_sequences=1 ) return output_sequences model, tokenizer = setModel(model_checkpoint) output_sequences = infer(model, tokenizer, text_element, max_length, temperature, top_k, top_p) for generated_sequence_idx, generated_sequence in enumerate(output_sequences): print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} ===") generated_sequences = generated_sequence.tolist() # Decode text text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True) # Remove all text after the stop token # text = text[: text.find(args.stop_token) if args.stop_token else None] # Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing total_sequence = ( text_element + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)):] ) generated_sequences.append(total_sequence) print(total_sequence) st.write(generated_sequences[-1], text_element)