Spaces:
Sleeping
Sleeping
Upload app2.py
Browse files
app2.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
2 |
+
import os
|
3 |
+
from langchain.chains import LLMChain
|
4 |
+
from langchain.prompts import PromptTemplate
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
|
12 |
+
# def qabot(question):
|
13 |
+
# llm_hugginface = HuggingFaceEndpoint(repo_id='google/flan-t5-large',token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),temperature=0.5,max_length=128)
|
14 |
+
# result= llm_hugginface("Can you write me the capital of {question}")
|
15 |
+
# return result
|
16 |
+
|
17 |
+
# ans =qabot("india")
|
18 |
+
# print(ans)
|
19 |
+
|
20 |
+
# question = "Who won the FIFA World Cup in the year 1994? "
|
21 |
+
def qabot(question):
|
22 |
+
template = """Question: {question}
|
23 |
+
|
24 |
+
Answer: Let's think step by step."""
|
25 |
+
|
26 |
+
prompt = PromptTemplate.from_template(template)
|
27 |
+
|
28 |
+
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
|
29 |
+
|
30 |
+
llm = HuggingFaceEndpoint(
|
31 |
+
repo_id=repo_id, max_length=128, temperature=0.5, token=os.getenv('HUGGINGFACEHUB_API_TOKEN')
|
32 |
+
)
|
33 |
+
llm_chain = LLMChain(prompt=prompt, llm=llm)
|
34 |
+
result =llm_chain.run(question)
|
35 |
+
return result
|
36 |
+
|
37 |
+
# print(qabot("Who won the FIFA World Cup in the year 1994? "))
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
st.header("Langchain Application")
|
42 |
+
|
43 |
+
input=st.text_input("Input: ",key="input")
|
44 |
+
response=qabot(input)
|
45 |
+
|
46 |
+
submit=st.button("Ask the question")
|
47 |
+
|
48 |
+
## If ask button is clicked
|
49 |
+
|
50 |
+
if submit:
|
51 |
+
st.subheader("The Response is")
|
52 |
+
st.write(response)
|
53 |
+
|