from langchain_community.llms import HuggingFaceEndpoint import os from langchain.chains import LLMChain from langchain.prompts import PromptTemplate import streamlit as st from dotenv import load_dotenv load_dotenv() # def qabot(question): # llm_hugginface = HuggingFaceEndpoint(repo_id='google/flan-t5-large',token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),temperature=0.5,max_length=128) # result= llm_hugginface("Can you write me the capital of {question}") # return result # ans =qabot("india") # print(ans) # question = "Who won the FIFA World Cup in the year 1994? " def qabot(question): template = """Question: {question} Answer: Let's think step by step.""" prompt = PromptTemplate.from_template(template) repo_id = "mistralai/Mistral-7B-Instruct-v0.2" llm = HuggingFaceEndpoint( repo_id=repo_id, max_length=128, temperature=0.5, token=os.getenv('HUGGINGFACEHUB_API_TOKEN') ) llm_chain = LLMChain(prompt=prompt, llm=llm) result =llm_chain.run(question) return result # print(qabot("Who won the FIFA World Cup in the year 1994? ")) st.header("Langchain Application") input=st.text_input("Input: ",key="input") response=qabot(input) submit=st.button("Ask the question") ## If ask button is clicked if submit: st.subheader("The Response is") st.write(response)